scholarly journals Production performance, egg quality, and small intestine histomorphology of the laying hens supplemented with phytogenic feed additive

2020 ◽  
Vol 29 (2) ◽  
pp. 362-371
Author(s):  
M.K. Sharma ◽  
T. Dinh ◽  
P.A. Adhikari
Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 701
Author(s):  
Yi Wan ◽  
Ruiyu Ma ◽  
Anam Khalid ◽  
Lilong Chai ◽  
Renrong Qi ◽  
...  

One of the most important factors that determine feed utilization by chickens is the feed form. Although it is generally believed that pellet diets have a positive effect on chicken growth, there are some studies that have indicated no difference between pellet and mash on chickens performance. This study was conducted to assess the effects of feed form on production performance, egg quality, nutrient metabolism and intestinal morphology in two breed laying hens. Two hundred and sixteen 25-week-old Hy-Line brown (n = 108) and Hy-Line grey (n = 108) hens were selected. Each breed was randomly allocated into two treatments with 6 replications (9 birds in each replication), which were fed mash and pellet diets, respectively. Production performances were recorded daily and egg quality traits were measured every two weeks. At 42 weeks of age, one bird per replication from each experimental group was selected for metabolism determination and intestine morphology observation. Compared with mash diets, pellet diets improved laying rate (p < 0.05), ADFI (average daily feed intake, p < 0.05), egg weight, shell strength, yolk proportion and Haugh unit (p < 0.05) in both breeds and reduced the FCR (feed conversion ratio, p < 0.05) in Hy-Line grey. The apparent digestibility of DM% (dry matter) and CP% (crude protein) were significantly higher (p < 0.05) in both breed laying hens fed pellet than those fed mash. The apparent digestibility of P% (phosphorus) and Ca% (calcium) was higher in Hy-Line grey fed pellet and was higher in Hy-Line brown fed mash. Compared to mash diets, pellet diets increased the VH (villus height), CD (crypt depth) and VCR (ratio of villus height to crypt depth) of the small intestine of Hy-Line grey, and increased the VH and CD of duodenum and ileum of Hy-Line brown. Overall, pellet diets improved production performance and nutrition metabolism through positive changes in the laying rate, feed intake, egg albumen quality and apparent digestibility of laying hens. The current findings provided support for the advantages of feeding pellets during the peak egg laying period for the two popular laying hen strains, Hy-Line brown and Hy-Line grey.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2041
Author(s):  
Xinyu Zou ◽  
Sha Jiang ◽  
Mi Zhang ◽  
Haiqiang Hu ◽  
Xiaoling Wu ◽  
...  

This study was to investigate the effects of Bacillus subtilis on production performance and bone pathophysiological characteristics of layers. Twenty-four 48-week-old Lohmann Pink-shell laying hens were randomly divided into two groups: a basic diet (control) and the basic diet mixed with Bacillus subtilis (0.5 g/kg) for a 60-day trial. Statistically, independent-sample t-test was used to assess the treatment differences. The results showed that Bacillus subtilis supplementation improved the percent of marketable eggs (p < 0.05) with reduced numbers of broken and soft-shelled eggs but had no effects on egg weight, height of albumen, yolk color, and Haugh unit (p > 0.05). Bacillus subtilis supplement also elevated maximum load (p = 0.06), maximum stress (p = 0.01), stiffness (p < 0.01), and Young’s modulus (p < 0.01) but suppressed maximum strain (p = 0.06) in the femur. In addition, compared with control birds, phosphorous concentration (p < 0.01) was reduced in serum at day 61 but increased in the femur (p < 0.05) in Bacillus subtilis fed birds. Bacillus subtilis fed birds also had lower magnesium concentrations in both femur (p = 0.04) and feces (p = 0.09). Furthermore, Bacillus subtilis increased plasma estrogen concentration (p = 0.01) and femur TNF receptor superfamily member 11b (OPG) expression (p < 0.05) but reduced plasma IL-1 (p < 0.01) and TNF-α (p < 0.01) concentrations. These results indicate that Bacillus subtilis could be used as a health promotor to reduce overproduction-induced inflammation and associated bone damage and to increase marketable egg production. The data provide evidence for developing a management strategy to use Bacillus subtilis as a feed additive to improve marketable egg production and health and welfare status of laying hens.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1224
Author(s):  
Kai Qiu ◽  
Youbiao Ma ◽  
Uchechukwu Edna Obianwuna ◽  
Jing Wang ◽  
Haijun Zhang ◽  
...  

The current experiment was conducted to investigate the application effects of selenium conjugated to insect protein (SCIP) in the production of selenium-enriched eggs. A total of 450 laying hens were randomly assigned to five dietary groups, each group consisting of six replicates. Hens in the control group received a diet without selenium supplementation, whereas hens in the other four groups received diets supplemented with either 1, 2, 5, or 10 mg/kg of selenium from SCIP. The productive performance, egg quality, antioxidant and immune capacity, biochemical indices, intestinal morphology, and oviduct health of laying hens were evaluated. The results showed that the supplementation of organic selenium provided by SCIP in the diets of laying hens enhanced performance and egg quality without any toxicity effect, even at the 10 mg/kg inclusion level. A level of 2 mg/kg of selenium provided by SCIP in diets tentatively improved the serum antioxidant and immune capacity, intestinal development, and oviduct health of laying hens in a conspicuous manner. Hence, the biosafety and positive effects of SCIP as a feed additive supplement in laying hens’ diet have been demonstrated with the enhanced production of safe and selenium-enriched eggs.


2021 ◽  
Vol 51 (4) ◽  
pp. 469-476
Author(s):  
X.J. Yi ◽  
A. Rehman ◽  
R.W. Akhtar ◽  
A. Abbas ◽  
K. Hussain ◽  
...  

This study was conducted to appraise the effects on egg quality and production performance of laying hens when drinking water was supplemented with calcium (Ca) and magnesium (Mg). A total of 384 (64-week-old) Hy-line Brown laying hens were assigned at random to four treatments, which consisted of CON: unsupplemented drinking water; T1: drinking water + 2 mg/L Ca + 250 mg/L Mg; T2: drinking water + 4 mg/L Ca + 510 mg/L Mg /10 L; and T3: drinking water + 5 mg/L Ca and 760 mg/L Mg. The experiment lasted six weeks. Water intake increased linearly in week 1 with the rising levels of Ca and Mg in the drinking water. Increasing the Ca and Mg levels improved eggshell strength (week 2 (P =0.01), week 5 (P =0.01), and week 6 (P = 0.03), and eggshell thickness (week 6) (P =0.02) and reduced the rate at which eggs were broken (week 4) (P =0.01). The supplemental Ca and Mg did not affect egg production, egg weight, Haugh unit, albumen height, eggshell colour, and yolk colour compared with CON. Nor did they influence the Haugh unit and albumen height after storing for 1, 5, 10 and 15 days. In conclusion, adding Ca and Mg to the drinking water increased the thickness and strength of the eggshells.


Sign in / Sign up

Export Citation Format

Share Document