Evidence for solar forcing in variability of temperatures and pressures in Europe

2009 ◽  
Vol 71 (12) ◽  
pp. 1309-1321 ◽  
Author(s):  
Jean-Louis Le Mouël ◽  
Elena Blanter ◽  
Mikhail Shnirman ◽  
Vincent Courtillot
Keyword(s):  
2015 ◽  
Vol 11 (A29A) ◽  
pp. 372-376
Author(s):  
Rémi Thiéblemont ◽  
Katja Matthes

AbstractUnderstanding the influence of solar variability on the Earth's climate requires knowledge of solar variability, solar-terrestrial interactions and observations, as well as mechanisms determining the response of the Earth's climate system. A summary of our current understanding from observational and modeling studies is presented with special focus on the “top-down” stratospheric UV and the “bottom-up” air-sea coupling mechanisms linking solar forcing and natural climate variability.


2006 ◽  
Vol 19 (11) ◽  
pp. 2347-2365 ◽  
Author(s):  
Gokhan Danabasoglu ◽  
William G. Large ◽  
Joseph J. Tribbia ◽  
Peter R. Gent ◽  
Bruce P. Briegleb ◽  
...  

Abstract New features that may affect the behavior of the upper ocean in the Community Climate System Model version 3 (CCSM3) are described. In particular, the addition of an idealized diurnal cycle of solar forcing where the daily mean solar radiation received in each daily coupling interval is distributed over 12 daylight hours is evaluated. The motivation for this simple diurnal cycle is to improve the behavior of the upper ocean, relative to the constant forcing over each day of previous CCSM versions. Both 1- and 3-h coupling intervals are also considered as possible alternatives that explicitly resolve the diurnal cycle of solar forcing. The most prominent and robust effects of all these diurnal cycles are found in the tropical oceans, especially in the Pacific. Here, the mean equatorial sea surface temperature (SST) is warmed by as much as 1°C, in better agreement with observations, and the mean boundary layer depth is reduced. Simple rectification of the diurnal cycle explains about half of the shallowing, but less than 0.1°C of the warming. The atmospheric response to prescribed warm SST anomalies of about 1°C displays a very different heat flux signature. The implication, yet to be verified, is that large-scale air–sea coupling is a prime mechanism for amplifying the rectified, daily averaged SST signals seen by the atmosphere. Although the use of upper-layer temperature for SST in CCSM3 underestimates the diurnal cycle of SST, many of the essential characteristics of diurnal cycling within the equatorial ocean are reproduced, including boundary layer depth, currents, and the parameterized vertical heat and momentum fluxes associated with deep-cycle turbulence. The conclusion is that the implementation of an idealized diurnal cycle of solar forcing may make more frequent ocean coupling and its computational complications unnecessary as improvements to the air–sea coupling in CCSM3 continue. A caveat here is that more frequent ocean coupling tends to reduce the long-term cooling trends typical of CCSM3 by heating already too warm ocean depths, but longer integrations are needed to determine robust features. A clear result is that the absence of diurnal solar forcing of the ocean has several undesirable consequences in CCSM3, including too large ENSO variability, much too cold Pacific equatorial SST, and no deep-cycle turbulence.


2007 ◽  
Vol 129 (1-3) ◽  
pp. 245-278 ◽  
Author(s):  
Rickard Lundin ◽  
Helmut Lammer ◽  
Ignasi Ribas

2017 ◽  
Vol 7 ◽  
pp. A9 ◽  
Author(s):  
Thierry Dudok de Wit ◽  
Sean Bruinsma

The 10.7 cm radio flux (F10.7) is widely used as a proxy for solar UV forcing of the upper atmosphere. However, radio emissions at other centimetric wavelengths have been routinely monitored since the 1950 s, thereby offering prospects for building proxies that may be better tailored to space weather needs. Here we advocate the 30 cm flux (F30) as a proxy that is more sensitive than F10.7 to longer wavelengths in the UV and show that it improves the response of the thermospheric density to solar forcing, as modelled with DTM (Drag Temperature Model). In particular, the model bias drops on average by 0–20% when replacing F10.7 by F30; it is also more stable (the standard deviation of the bias is 15–40% smaller) and the density variation at the the solar rotation period is reproduced with a 35–50% smaller error. We compare F30 to other solar proxies and discuss its assets and limitations.


2021 ◽  
Author(s):  
Aleksei Seleznev ◽  
Dmitry Mukhin ◽  
Andrey Gavrilov ◽  
Alexander Feigin

<p>We investigate the decadal-to-centennial ENSO variability based on nonlinear data-driven stochastic modeling. We construct data-driven model of yearly Niño-3.4 indices reconstructed from paleoclimate proxies based on three different sea-surface temperature (SST) databases at the time interval from 1150 to 1995 [1]. The data-driven model is forced by the solar activity and CO2 concentration signals. We find the persistent antiphasing relationship between the solar forcing and Niño-3.4 SST on the bicentennial time scale. The dynamical mechanism of such a response is discussed.</p><p>The work was supported by the Russian Science Foundation (Grant No. 20-62-46056)</p><p>1. Emile-Geay, J., Cobb, K. M., Mann, M. E., & Wittenberg, A. T. (2013). Estimating Central Equatorial Pacific SST Variability over the Past Millennium. Part II: Reconstructions and Implications, Journal of Climate, 26(7), 2329-2352.</p>


2000 ◽  
Vol 18 (5) ◽  
pp. 583-588 ◽  
Author(s):  
W. Soon ◽  
E. Posmentier ◽  
S. Baliunas

Abstract. We compare the equilibrium climate responses of a quasi-dynamical energy balance model to radiative forcing by equivalent changes in CO2, solar total irradiance (Stot) and solar UV (SUV). The response is largest in the SUV case, in which the imposed UV radiative forcing is preferentially absorbed in the layer above 250 mb, in contrast to the weak response from global-columnar radiative loading by increases in CO2 or Stot. The hypersensitive response of the climate system to solar UV forcing is caused by strongly coupled feedback involving vertical static stability, tropical thick cirrus ice clouds and stratospheric ozone. This mechanism offers a plausible explanation of the apparent hypersensitivity of climate to solar forcing, as suggested by analyses of recent climatic records. The model hypersensitivity strongly depends on climate parameters, especially cloud radiative properties, but is effective for arguably realistic values of these parameters. The proposed solar forcing mechanism should be further confirmed using other models (e.g., general circulation models) that may better capture radiative and dynamical couplings of the troposphere and stratosphere.Key words: Meteorology and atmospheric dynamics (climatology · general or miscellaneous) · Solar physics · astrophysics · and astronomy (ultraviolet emissions)


2016 ◽  
Author(s):  
Fernando Arizmendi ◽  
Marcelo Barreiro ◽  
Cristina Masoller

Abstract. By comparing time-series of surface air temperature (SAT, monthly reanalysis data from NCEP CDAS1 and ERA Interim) with respect to the top-of-atmosphere incoming solar radiation (the insolation), we perform a detailed analysis of the SAT response to solar forcing. By computing the entropy of SAT time-series, we also quantify the degree of stochasticity. We find spatial coherent structures which are characterized by high stochasticity and nearly linear response to solar forcing (the shape of SAT time-series closely follows that of the isolation), or vice versa. The entropy analysis also allows to identify geographical regions in which there are significant differences between the NCEP CDAS1 and ERA Interim datasets, which are due to the presence of extreme values in one dataset but not in the other. Therefore, entropy maps are a valuable tool for anomaly detection and model inter-comparisons.


PAGES news ◽  
2012 ◽  
Vol 20 (2) ◽  
pp. 91-91
Author(s):  
Jürg Beer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document