The role of the traveling planetary wave ionospheric disturbances on the equatorial F region post-sunset height rise during the last extreme low solar activity and comparison with high solar activity

2014 ◽  
Vol 113 ◽  
pp. 47-57 ◽  
Author(s):  
A.J. de Abreu ◽  
P.R. Fagundes ◽  
M.J.A. Bolzan ◽  
R. de Jesus ◽  
V.G. Pillat ◽  
...  
2007 ◽  
Vol 25 (6) ◽  
pp. 1337-1343 ◽  
Author(s):  
L. Liu ◽  
W. Wan ◽  
X. Yue ◽  
B. Zhao ◽  
B. Ning ◽  
...  

Abstract. In this paper, the ten-year (1996–2005) total ion density Ni measurements from the Defense Meteorological Satellite Program (DMSP) spacecraft in the morning and evening (09:30 and 21:30 LT) sectors have been analyzed to explore the dependence of plasma densities in the topside ionosphere at middle and low latitudes on the solar activity level. Results indicate that there is a strong solar activity dependence of DMSP Ni at 848 km altitude, which has latitudinal and seasonal features. The plasma density in the topside ionosphere has an approximately linear dependence on daily F107 and a strongly nonlinear dependence on SEM/SOHO EUV, such that the change rate of Ni becomes greater with increasing solar EUV. This is quite different from the dependence of Ni near the F-Region peak (NmF2), at which the rate of change of NmF2 decreases with increasing solar EUV. The rate of change of Ni at the DMSP altitude is greatest in the latitude range where Ni is greatest during high solar activity. We suggest that this greater rate of change (or amplification effect) of Ni at the DMSP altitude is mainly a consequence of the solar activity variations of the topside scale height. The changes in the height of the F-Region peak (hmF2) and the density NmF2 play a secondary role.


2018 ◽  
Vol 8 ◽  
pp. A27 ◽  
Author(s):  
Krishnendu Sekhar Paul ◽  
Haris Haralambous ◽  
Christina Oikonomou ◽  
Ashik Paul ◽  
Anna Belehaki ◽  
...  

Spread F is an ionospheric phenomenon which has been reported and analyzed extensively over equatorial regions on the basis of the Rayleigh-Taylor (R-T) instability. It has also been investigated over midlatitude regions, mostly over the Southern Hemisphere with its generation attributed to the Perkins instability mechanism. Over midlatitudes it has also been correlated with geomagnetic storms through the excitation of travelling ionospheric disturbances (TIDs) and subsequent F region uplifts. The present study deals with the occurrence rate of nighttime spread F events and their diurnal, seasonal and solar cycle variation observed over three stations in the European longitude sector namely Nicosia (geographic Lat: 35.29 °N, Long: 33.38 °E geographic: geomagnetic Lat: 29.38 °N), Athens (geographic Lat: 37.98 °N, Long: 23.73 °E geographic: geomagnetic Lat: 34.61 °N) and Pruhonice (geographic Lat: 50.05 °N, Long: 14.41 °E geographic: geomagnetic Lat: 47.7 °N) during 2009, 2015 and 2016 encompassing periods of low, medium and high solar activity, respectively. The latitudinal and longitudinal variation of spread F occurrence was examined by considering different instability triggering mechanisms and precursors which past literature identified as critical to the generation of spread F events. The main findings of this investigation is an inverse solar cycle and annual temporal dependence of the spread F occurrence rate and a different dominant spread F type between low and high European midlatitudes.


2004 ◽  
Vol 22 (8) ◽  
pp. 2849-2860 ◽  
Author(s):  
R. P. Singh ◽  
R. P. Patel ◽  
A. K. Singh

Abstract. The VHF amplitude scintillation recorded during the period January 1991 to December 1993 in the declining phase of a solar cycle and April 1998 to December 1999 in the ascending phase of the next solar cycle at Varanasi (geogr. lat.=25.3°, long.=83.0°, dip=37°N) have been analyzed to study the behavior of ionospheric irregularities during active solar periods and magnetic storms. It is shown that irregularities occur at arbitrary times and may last for <30min. A rise in solar activity increases scintillations during winter (November-February) and near equinoxes (March-April; September-October), whereas it depresses the scintillations during the summer (May-July). In general, the role of magnetic activity is to suppress scintillations in the pre-midnight period and to increase it in the post-midnight period during equinox and winter seasons, whilst during summer months the effect is reversed. The pre-midnight scintillation is sometimes observed when the main phase of Dst corresponds to the pre-midnight period. The annual variation shows suppression of scintillations on disturbed days, both during pre-midnight and post-midnight period, which becomes more effective during years of high solar activity. It is observed that for magnetic storms for which the recovery phase starts post-midnight, the probability of occurrence of irregularities is enhanced during this time. If the magnetic storm occurred during daytime, then the probability of occurrence of scintillations during the night hours is decreased. The penetration of magnetospheric electric fields to the magnetic equator affects the evolution of low-latitude irregularities. A delayed disturbance dynamo electric field also affects the development of irregularities.


2021 ◽  
Vol 2094 (2) ◽  
pp. 022033
Author(s):  
I Ivanov ◽  
O Maltseva ◽  
T Nikitenko

Abstract To determine the conditions for the propagation of HF signals through the ionosphere along various paths, there are several possibilities: (1) ionograms of vertical sounding, (2) ionograms of oblique sounding between transmission and receiver points, (3) receiving signals from transmitters of exact time at fixed frequencies (here ~10 MHz), (4) using ionospheric models. This paper presents the results of a comprehensive study that implements all these possibilities. They refer to the propagation of HF signals on reciprocal paths between Rostov and Moscow during the period of the lowest solar activity of cycle 24 (April-May 2020). It is shown that the maximum usable frequency (MUF) of propagation through the F2 layer of the ionosphere in the overwhelming majority of cases did not exceed 10 MHz both in the experiment and according to model calculations. The signals were propagated through the Es layer. If earlier it was shown that such a joint experiment allows revealing the presence of traveling ionospheric disturbances, the results of this work emphasize the role of the Es layer.


2021 ◽  
Vol 30 (1) ◽  
pp. 184-190
Author(s):  
Dmitry V. Erofeev

Abstract Measurements of velocity and magnetic field in near-Earth heliosphere is analized in order to investigate systematical deflection from transversality of the velocity and magnetic field fluctuations in undisturbed solar wind. Fluctuations occurred in the meridional plain of heliosphere (RN plain of the RTN reference system) are transversal with respect to mean magnetic field during periods of high solar activity, but they become non-transversal close to solar cycle minima. This phenomenon is investigated focusing on a role of Alfvén waves. It is shown that deflections from transversality is mostly expressed by fluctuations in slow solar wind streams with low contribution of Alfvén waves, whereas strongly Alfvénic turbulence undergo such deflection in a less degree. In addition, we consider orientation of velocity fluctuations in the azimuthal (RT) plain of heliosphere, which also indicates some interesting features.


2018 ◽  
Vol 36 (2) ◽  
pp. 459-471 ◽  
Author(s):  
Amelia Naomi Onohara ◽  
Inez Staciarini Batista ◽  
Paulo Prado Batista

Abstract. The main purpose of this study is to investigate the four-peak structure observed in the low-latitude equatorial ionosphere by the FORMOSAT/COSMIC satellites. Longitudinal distributions of NmF2 (the density of the F layer peak) and hmF2 (ionospheric F2-layer peak height) averages, obtained around September equinox periods from 2007 to 2015, were submitted to a bi-spectral Fourier analysis in order to obtain the amplitudes and phases of the main waves. The four-peak structure in the equatorial and low-latitude ionosphere was present in both low and high solar activity periods. This kind of structure possibly has tropospheric origins related to the tidal waves propagating from below that modulate the E-region dynamo, mainly the eastward non-migrating diurnal tide with wavenumber 3 (DE3, E for eastward). This wave when combined with the migrating diurnal tide (DW1, W for westward) presents a wavenumber-4 (wave-4) structure under a synoptic view. Electron densities observed during 2008 and 2013 September equinoxes revealed that the wave-4 structures became more prominent around or above the F-region altitude peak (∼  300–350 km). The four-peak structure remains up to higher ionosphere altitudes (∼  800 km). Spectral analysis showed DE3 and SPW4 (stationary planetary wave with wavenumber 4) signatures at these altitudes. We found that a combination of DE3 and SPW4 with migrating tides is able to reproduce the wave-4 pattern in most of the ionospheric parameters. For the first time a study using wave variations in ionospheric observations for different altitude intervals and solar cycle was done. The conclusion is that the wave-4 structure observed at high altitudes in ionosphere is related to effects of the E-region dynamo combined with transport effects in the F region.


1995 ◽  
Vol 38 (3-4) ◽  
Author(s):  
T. Gulyaeva ◽  
P. Spalla

Variability of total electron content (TEC) observed by the Faraday rotation method at Florence has been stud- ied with the same technique applied independently to the ionospheric parameters foF2 and M(3000)F2 of the ground-based vertical-incidence sounding database (VID). Results of daily and monthly TEC disturbance indices at sub-ionospheric point are compared with variability of the ionosphere at Rome and Gibilmanna (de- duced from VID) for a period of 1976 to 1991. During moderate and high solar activity the variability of TEC is greater than the variability of VID, whereas during solar minimum the situation is opposite. In this context joint TEC and VID observations distinguish either the F region peak or the topside ionosphere heights where the dynamic processes dominate at different times.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Yuichi Otsuka ◽  
Atsuki Shinbori ◽  
Takuya Tsugawa ◽  
Michi Nishioka

AbstractIn order to reveal solar activity dependence of the medium-scale traveling ionospheric disturbances (MSTIDs) at midlatitudes, total electron content (TEC) data obtained from a Global Positioning System (GPS) receiver network in Japan during 22 years from 1998 to 2019 were analyzed. We have calculated the detrended TEC by subtracting the 1-h running average from the original TEC data for each satellite and receiver pair, and made two-dimensional TEC maps of the detrended TEC with a spatial resolution of 0.15° × 0.15° in longitude and latitude. We have investigated MSTID activity, defined as $$\delta I/\overline{I}$$ δ I / I ¯ , where $$\delta I$$ δ I and $$\overline{I}$$ I ¯ are standard deviation of the detrended TEC and the average vertical TEC within the area of 133.0°–137.0° E and 33.0°–37.0° N for 1 h, respectively. From each 2-h time series of the detrended TEC data within the same area as the MSTID activity, auto-correlation functions (ACFs) of the detrended TEC were calculated to estimate the horizontal propagation velocity and direction of the MSTIDs. Statistical results of the MSTID activity and propagation direction of MSTIDs were consistent with previous studies and support the idea that daytime MSTIDs could be caused by atmospheric gravity waves, and that nighttime MSTIDs were caused by electro-dynamical forces, such as the Perkins instability. From the current long-term observations, we have found that the nighttime MSTID activity and occurrence rate increased with decreasing solar activity. For the daytime MSTID, the occurrence rate increased with decreasing solar activity, whereas the MSTID activity did not show distinct solar activity dependence. These results suggest that the secondary gravity waves generated by dissipation of the primary gravity waves propagating from below increase under low solar activity conditions. The mean horizontal phase velocity of the MSTIDs during nighttime did not show a distinct solar activity dependence, whereas that during daytime showed an anticorrelation with solar activity. The horizontal phase velocity of the daytime MSTIDs was widely distributed from 40 to 180 m/s under high solar activity conditions, whereas it ranged between 80 and 200 m/s, with a maximum occurrence at 130 m/s under low solar activity conditions, suggesting that gravity waves with low phase velocity could be dissipated by high viscosity in the thermosphere under low solar activity conditions.


Sign in / Sign up

Export Citation Format

Share Document