scholarly journals Seasonal and interannual variations of water vapor in the upper troposphere and lower stratosphere over the Asian Summer Monsoon region- in perspective of the tropopause and ocean-atmosphere interactions

2020 ◽  
Vol 201 ◽  
pp. 105244
Author(s):  
Siddarth Shankar Das ◽  
K.V. Suneeth
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Jiali Luo ◽  
Jiayao Song ◽  
Hongying Tian ◽  
Lei Liu ◽  
Xinlei Liang

We use ERA-Interim reanalysis, MLS observations, and a trajectory model to examine the chemical transport and tracers distribution in the Upper Troposphere and Lower Stratosphere (UTLS) associated with an east-west oscillation case of the anticyclone in 2016. The results show that the spatial distribution of water vapor (H2O) was more consistent with the location of the anticyclone than carbon monoxide (CO) at 100 hPa, and an independent relative high concentration center was only found in H2O field. At 215 hPa, although the anticyclone center also migrated from the Tibetan Mode (TM) to the Iranian Mode (IM), the relative high concentration centers of both tracers were always colocated with regions where upward motion was strong in the UTLS. When the anticyclone migrated from the TM, air within the anticyclone over Tibetan Plateau may transport both westward and eastward but was always within the UTLS. The relative high concentration of tropospheric tracers within the anticyclone in the IM was from the east and transported by the westward propagation of the anticyclone rather than being lifted from surface directly. Air within the relative high geopotential height centers over Western Pacific was partly from the main anticyclone and partly from lower levels.


2021 ◽  
Author(s):  
Toru Terao ◽  
Fumie Murata ◽  
Yusuke Yamane ◽  
Masashi Kiguchi ◽  
Azusa Fukushima ◽  
...  

<p>The Asian summer monsoon system is the strongest monsoon circulation on the Earth. A huge reversal of meridional temperature gradient develops over the area covering the hemispheric region due to strong diabatic heating associated with convective activities. Vigorous conventions reach the upper troposphere providing a great amount of high potential temperature airmass. This high potential temperature air mass originates from the high equivalent potential temperature airmass accumulated in the lower troposphere over the Asian monsoon region. The highest potential temperature tropospheric air mass is observed only over the Asian summer monsoon region. To get a total view of the Asian summer monsoon circulation system, we focused on the mass budget of the upper-tropospheric air mass with a potential temperature between 355K to 370K. The non-conservative change of the air mass corresponds with the diabatic heating due to the convective activities, and the diabatic cooling due to the radiative process. To analyze the radiative cooling process that takes place in the upper troposphere, we utilized hourly GSMaP pixel values to detect rain-free pixels of the ERA5 dataset. We calculated the non-conservative air mass tendency over the rain-free pixels on a daily and 0.5 degrees spatio-temporal scale. We found the radiative equilibrium amount of high potential temperature air mass and the Newtonian cooling process with a relaxation time scale of 6 to 7 days. We will show the quantitative estimates of the total convective process of the Asian summer monsoon system associated with the convective clouds and radiative processes, through the mass budget of 355K-370K potential temperature air mass. We will further show results of the evaluation of the accuracy of TRMM and GPM products using our high-resolution tipping bucket raingauge network distributed over the Northeastern Indian subcontinent.</p>


2015 ◽  
Vol 33 (8) ◽  
pp. 1051-1058 ◽  
Author(s):  
S. D. Bansod ◽  
S. Fadnavis ◽  
S. P. Ghanekar

Abstract. In this paper, interannual variability of tropospheric air temperatures over the Asian summer monsoon region during the pre-monsoon months is examined in relation to Indian summer monsoon rainfall (ISMR; June to September total rainfall). For this purpose, monthly grid-point temperatures in the entire troposphere over the Asian summer monsoon region and ISMR data for the period 1949–2012 have been used. Spatial correlation patterns are investigated between the temperature field in the lower tropospheric levels during May over the Asian summer monsoon region and ISMR. The results indicate a strong and significant northwest–southeast dipole structure in the spatial correlations over the Indian region, with highly significant positive (negative) correlations over the regions of north India and the western Tibetan Plateau region – region R1 (north Bay of Bengal: region R2). The observed dipole is seen significantly up to a level of 850 hPa and eventually disappears at 700 hPa. Thermal indices evaluated at 850 hPa level, based on average air temperatures over the north India and western Tibetan Plateau region (TI1) and the north Bay of Bengal region (TI2) during May, show a strong, significant relationship with the ISMR. The results are found to be consistent and robust, especially in the case of TI1 during the period of analysis. A physical mechanism for the relationship between these indices and ISMR is proposed. Finally the composite annual cycle of tropospheric air temperature over R1 during flood/drought years of ISMR is examined. The study brings out the importance of the TI1 in the prediction of flood/drought conditions over the Indian subcontinent.


2020 ◽  
Author(s):  
Xiaolu Yan ◽  
Paul Konopka ◽  
Marius Hauck ◽  
Aurélien Podglajen ◽  
Felix Ploeger

Abstract. Inter-hemispheric transport may strongly affect the trace gas composition of the atmosphere, especially in relation to anthropogenic emissions which originate mainly in the Northern Hemisphere. This study investigates the transport from the boundary surface layer of the Northern Hemispheric (NH) extratropics (30–90° N), Southern Hemispheric (SH) extratropics (30–90° S), and tropics (30° S–30° N) into the global upper troposphere and lower stratosphere (UTLS) using simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS). In particular, we diagnose inter-hemispheric transport in terms of the air mass fractions (AMF), age spectra, and the mean age of air (AoA) calculated for these three source regions. We find that the AMFs from the NH extratropics to the UTLS are about five times larger than the corresponding contributions from the SH extratropics and almost twenty times smaller than those from the tropics. The amplitude of the AMF seasonal variability originating from the NH extratropics is comparable to that from the tropics. The NH and SH extratropics age spectra show much stronger seasonality compared to the seasonality of the tropical age spectra. The transit time of NH extratropical origin air to the SH extratropics is longer than vice versa. The asymmetry of the inter-hemispheric transport is mainly driven by the Asian summer monsoon (ASM). Both ASM and westerly ducts affect the cross hemispheric transport of the NH extratropical air to the SH, and it is an interplay between the ASM and westerly ducts which triggers such cross-equator transport from boreal summer to fall, mainly westerly ducts over the eastern Atlantic.


Sign in / Sign up

Export Citation Format

Share Document