A method for the design of 3D scaffolds for high-density cell attachment and determination of optimum perfusion culture conditions

2008 ◽  
Vol 41 (7) ◽  
pp. 1436-1449 ◽  
Author(s):  
Christophe Provin ◽  
Kiyoshi Takano ◽  
Yasuyuki Sakai ◽  
Teruo Fujii ◽  
Ryo Shirakashi
Author(s):  
Kewalin Inthanon ◽  
Weerah Wongkham ◽  
Wanida Junwikul ◽  
Siriwadee Chomdej

Cell-based therapies and tissue engineering applications require biocompatible substrates that support and regulate the growth, survival, and differentiation of specific cell types. Extensive research efforts in regenerative medicine are devoted to the development of tunable biomaterials which support various cell types including stem cells. In this research, the non-cytotoxic biopolymer polycaprolactone (PCL) was fabricated into 2D and 3D scaffolds with or without the low-pressure oxygen plasma treatment to enhance hydrophilicity. Cellular responses and biocompatibility were evaluated using a human Wharton’s jelly mesenchymal stem cell line (BCP-K1). The 2D PCL scaffolds enhanced initial cell attachment compared to the 3Ds indicated by a higher expression of focal adhesion kinase (FAK). Whilst, the 3D scaffolds promoted cell proliferation and migration as evidenced by higher cyclin A expression and filopodial protrusion, respectively. The 3D scaffolds potentially protected the cell entering to apoptosis/necrosis program and induced cell differentiation, evaluated by gene expression. Both 2D and 3D PCL appeared to have stronger effects on cell behavior than a control substrate (polystyrene). In summarize, the different configuration and surface properties of PCL scaffolds provide various options for modulation of stem cell behaviors, including attachment, proliferation, survival, and differentiation, when combined with specific growth factors and culture conditions.


2021 ◽  
Vol 22 (12) ◽  
pp. 6241
Author(s):  
Roxanne N. Stone ◽  
Stephanie M. Frahs ◽  
Makenna J. Hardy ◽  
Akina Fujimoto ◽  
Xinzhu Pu ◽  
...  

Osteoarthritis is a major concern in the United States and worldwide. Current non-surgical and surgical approaches alleviate pain but show little evidence of cartilage restoration. Cell-based treatments may hold promise for the regeneration of hyaline cartilage-like tissue at the site of injury or wear. Cell–cell and cell–matrix interactions have been shown to drive cell differentiation pathways. Biomaterials for clinically relevant applications can be generated from decellularized porcine auricular cartilage. This material may represent a suitable scaffold on which to seed and grow chondrocytes to create new cartilage. In this study, we used decellularization techniques to create an extracellular matrix scaffold that supports chondrocyte cell attachment and growth in tissue culture conditions. Results presented here evaluate the decellularization process histologically and molecularly. We identified new and novel biomarker profiles that may aid future cartilage decellularization efforts. Additionally, the resulting scaffold was characterized using scanning electron microscopy, fluorescence microscopy, and proteomics. Cellular response to the decellularized scaffold was evaluated by quantitative real-time PCR for gene expression analysis.


2009 ◽  
Vol 42 (24) ◽  
pp. 9523-9527 ◽  
Author(s):  
John R. Ell ◽  
Dennis E. Mulder ◽  
Roland Faller ◽  
Timothy E. Patten ◽  
Tonya L. Kuhl

Particles ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 205-213
Author(s):  
Anna Senger ◽  
Peter Senger

The Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt is designed to investigate the properties of high-density QCD matter with multi-differential measurements of hadrons and leptons, including rare probes such as multi-strange anti-hyperons and charmed particles. The research program covers the study of the high-density equation-of-state of nuclear matter and the exploration of the QCD phase diagram at large baryon chemical potentials, including the search for quark matter and the critical endpoint of a hypothetical 1st order phase transition. The CBM setup comprises detector systems for the identification of charged hadrons, electrons, and muons; for the determination of collision centrality and the orientation of the reaction plane; and a free-streaming data read-out and acquisition system, which allows online reconstruction and selection of events up to reaction rates of 10 MHz. In this article, emphasis is placed on the measurement of muon pairs in Au-Au collisions at FAIR beam energies, which are unique probes used to determine the temperature of the fireball, and hence to search for a caloric curve of QCD matter. Simultaneously, the subthreshold production of charmonium can be studied via its dimuon decay in order to shed light on the microscopic structure of QCD matter at high baryon densities. The CBM setup with focus on dimuon measurements and the results of the corresponding physics performance studies will be presented.


1982 ◽  
Vol 257 (16) ◽  
pp. 9593-9597 ◽  
Author(s):  
M D Pierschbacher ◽  
E Ruoslahti ◽  
J Sundelin ◽  
P Lind ◽  
P A Peterson

2003 ◽  
Vol 91 (1) ◽  
pp. 235-241 ◽  
Author(s):  
Knut Magne Furuheim ◽  
David E. Axelson ◽  
Henrik W. Antonsen ◽  
Torbj�rn Helle
Keyword(s):  

Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1369
Author(s):  
Young-Su Kim ◽  
Arun Asif ◽  
Abdul Rahim Chethikkattuveli Salih ◽  
Jae-Wook Lee ◽  
Ki-Nam Hyun ◽  
...  

The spheroid culture system provides an efficient method to emulate organ-specific pathophysiology, overcoming the traditional two-dimensional (2D) cell culture limitations. The intervention of microfluidics in the spheroid culture platform has the potential to enhance the capacity of in vitro microphysiological tissues for disease modeling. Conventionally, spheroid culture is carried out in static conditions, making the media nutrient-deficient around the spheroid periphery. The current approach tries to enhance the capacity of the spheroid culture platform by integrating the perfusion channel for dynamic culture conditions. A pro-inflammatory hepatic model was emulated using a coculture of HepG2 cell line, fibroblasts, and endothelial cells for validating the spheroid culture plate with a perfusable channel across the spheroid well. Enhanced proliferation and metabolic capacity of the microphysiological model were observed and further validated by metabolic assays. A comparative analysis of static and dynamic conditions validated the advantage of spheroid culture with dynamic media flow. Hepatic spheroids were found to have improved proliferation in dynamic flow conditions as compared to the static culture platform. The perfusable culture system for spheroids is more physiologically relevant as compared to the static spheroid culture system for disease and drug analysis.


Sign in / Sign up

Export Citation Format

Share Document