Plasmid DNA microgels for cancer treatment through combination of chemotherapy and gene delivery

2014 ◽  
Vol 185 ◽  
pp. S35
Author(s):  
Diana Barata Costa ◽  
Artur Monteiro Valente ◽  
João Sampaio Queiroz
2020 ◽  
Vol 20 (11) ◽  
pp. 821-830
Author(s):  
Prasad Pofali ◽  
Adrita Mondal ◽  
Vaishali Londhe

Background: Current gene therapy vectors such as viral, non-viral, and bacterial vectors, which are used for cancer treatment, but there are certain safety concerns and stability issues of these conventional vectors. Exosomes are the vesicles of size 40-100 nm secreted from multivesicular bodies into the extracellular environment by most of the cell types in-vivo and in-vitro. As a natural nanocarrier, exosomes are immunologically inert, biocompatible, and can cross biological barriers like the blood-brain barrier, intestinal barrier, and placental barrier. Objective: This review focusses on the role of exosome as a carrier to efficiently deliver a gene for cancer treatment and diagnosis. The methods for loading of nucleic acids onto the exosomes, advantages of exosomes as a smart intercellular shuttle for gene delivery and therapeutic applications as a gene delivery vector for siRNA, miRNA and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and also the limitations of exosomes as a gene carrier are all reviewed in this article. Methods: Mostly, electroporation and chemical transfection are used to prepare gene loaded exosomes. Results: Exosome-mediated delivery is highly promising and advantageous in comparison to the current delivery methods for systemic gene therapy. Targeted exosomes, loaded with therapeutic nucleic acids, can efficiently promote the reduction of tumor proliferation without any adverse effects. Conclusion: In the near future, exosomes can become an efficient gene carrier for delivery and a biomarker for the diagnosis and treatment of cancer.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 940
Author(s):  
Chaojie Zhu ◽  
Zhiheng Ji ◽  
Junkai Ma ◽  
Zhijie Ding ◽  
Jie Shen ◽  
...  

Cancer is one of the most devastating and ubiquitous human diseases. Conventional therapies like chemotherapy and radiotherapy are the most widely used cancer treatments. Despite the notable therapeutic improvements that these measures achieve, disappointing therapeutic outcome and cancer reoccurrence commonly following these therapies demonstrate the need for better alternatives. Among them, bacterial therapy has proven to be effective in its intrinsic cancer targeting ability and various therapeutic mechanisms that can be further bolstered by nanotechnology. In this review, we will discuss recent advances of nanotechnology-facilitated bacteria-based drug and gene delivery systems in cancer treatment. Therapeutic mechanisms of these hybrid nanoformulations are highlighted to provide an up-to-date understanding of this emerging field.


Nanoscale ◽  
2021 ◽  
Author(s):  
Zhe Sun ◽  
Jinhai Huang ◽  
Linjia Su ◽  
Jing Li ◽  
Fangzheng Qi ◽  
...  

Using cell-penetrating peptides (CPPs), typically HIV-Tat, to deliver the therapeutic gene for cancer treatment has being hampered by low efficient delivery and complicated uptake route of plasmid DNA (pDNA). On...


2014 ◽  
Vol 15 (3) ◽  
pp. 997-1001 ◽  
Author(s):  
Shoichiro Asayama ◽  
Atsushi Nohara ◽  
Yoichi Negishi ◽  
Hiroyoshi Kawakami

2015 ◽  
Vol 16 (4) ◽  
pp. 1226-1231 ◽  
Author(s):  
Shoichiro Asayama ◽  
Atsushi Nohara ◽  
Yoichi Negishi ◽  
Hiroyoshi Kawakami

genesis ◽  
2003 ◽  
Vol 35 (3) ◽  
pp. 169-174 ◽  
Author(s):  
Masahiro Sato ◽  
Maya Tanigawa ◽  
Natsuko Kikuchi ◽  
Shingo Nakamura ◽  
Minoru Kimura

2012 ◽  
Vol 14 (2) ◽  
pp. 130-137 ◽  
Author(s):  
Sofia Ribeiro ◽  
Juergen Mairhofer ◽  
Catarina Madeira ◽  
Maria Margarida Diogo ◽  
Cláudia Lobato da Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document