In-vivo Measurement Of 3d Left Ventricular Myocardial Strain Using CineCT Imaging Post Myocardial Infarction And Following Intramyocardial Delivery Of Theranostic Hydrogel

2021 ◽  
Vol 15 (4) ◽  
pp. S26-S27
Author(s):  
D. Midgett ◽  
S. Thorn ◽  
S. Awn ◽  
S. Uman ◽  
T. Lysyy ◽  
...  
2021 ◽  
Vol 22 (Supplement_3) ◽  
Author(s):  
D Midgett ◽  
RA Ricardo Avendano ◽  
IM Inga Melvinsdottir ◽  
SU Selen Uman ◽  
SLT Stephanie Thorn ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): National Institute of Health (NIH) Purpose Myocardial infarction (MI) induces acute regional changes in myocardial strain and stiffness in the infarct and the remote areas of the left ventricle (LV), which lead to adverse changes in LV geometry and function. We hypothesize that cineCT imaging could evaluate these biomechanical changes along with the effects of intramyocardial delivery of theranostic hydrogels.  Introduction We present an experimental platform to assess changes in the deformation of the LV myocardium using contrast cineCT (CCT) imaging of the beating porcine heart (active deformation) before and after acute MI and intramyocardial delivery of an imageable theranostic hydrogel. We then assess the acute effects of hydrogel delivery early post-MI on biomechanics (passive deformation) using an ex vivo perfused heart preparation.  Methods Contrast cineCT imaging was performed using 64-slice CT on 5 Yorkshire pigs without MI (n = 3) or with MI (n = 2). MI pigs had serial imaging performed before and 1 hour after acute surgical coronary occlusion to induce anterolateral MI. One MI pig was also imaged 1 hour after intramyocardial injection of a novel imageable theranostic iodinated hydrogel within the MI region. Post euthanasia, excised hearts were flushed with chilled UW cardioplegic solution and mounted on a custom inflation apparatus for cineCT imaging during LV inflation by external pump. LV pressure was cycled between 10 and 60 mmHg at 35 bpm. Dilute iohexol was injected into aortic root and UW perfusate (15 ml, 1 ml/sec). CineCT image series were reconstructed, contrast enhanced, resampled to the LV long axis (Z), and exported as a series of 10 CT volumes covering 0-90% of the cardiac/inflation cycle. Volumes were registered incrementally using nonlinear image registration (BioImageSuite) and the calculated displacement at each time point was exported at a resolution of 1 mm. A custom Matlab program was used to fit the displacement field to local trilinear polynomials and then calculate the displacement gradients and 3D Lagrangian strains. To estimate the accuracy of this approach, cardiac volumes were also numerically deformed using a 10 pixel translation and 5% triaxial stretch. Results We successfully acquired serial in-vivo and ex-vivo 3D CineCT images for assessment of the active and passive LV myocardial deformation and tracked deformation through the full cardiac/inflation cycle (Figure 2). Numerical deformation tests showed average tracking errors of < 0.2 mm (1/4 pixel) in the X,Y,Z directions of the volume. These resulted in Lagrangian strain errors of < 0.47% for the in-plane strains EXX and EYY (radial and circumferential plane) and < 0.5% for EZZ (long axis).  Conclusions We have developed a novel CineCT imaging platform that allows for high resolution in-vivo and ex-vivo measurement of myocardial biomechanics post-MI and following intramyocardial delivery of imageable theranostic hydrogels, which may improve early active and passive biomechanics.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jerome Thireau ◽  
Charlotte Farah ◽  
Muriel Bouly ◽  
Jerome Roussel ◽  
Alain Lacampagne ◽  
...  

Introduction: Targeting leaky cardiac ryanodine receptors (RyR2) to prevent diastolic Ca2+ release from the sarcoplasmic reticulum (SR) is a promising pharmacological approach, to rescue the impaired cardiac contraction and prevent Ca2+-dependent arrhythmias in heart failure (HF) and disease. Hypothesis: Based on prior work from the Marks group, the Rycal S44121 (also known as ARM036) is an experimental small molecule stabilizer of RyR. We investigated the effects of S44121 in a post-myocardial infarction (PMI) mouse model of HF. Methods and results: Mice were randomly assigned to 3 groups: Sham, PMI (subjected to left coronary artery ligation), and PMI-S (treated for 3 weeks with S44121 by subcutaneous osmotic pumps on day 7 post-MI, 10 mg/kg/day). Intracellular Ca2+ was measured on single left ventricular myocytes. PMI mice exhibited a 4-fold increase in the frequency of spontaneous Ca2+ release events, Ca2+ sparks, as measured in quiescent cells using the fluorescent Ca2+ indicator Fluo-4. PMI mice also exhibited higher global diastolic Ca2+, measured with the ratiometric fluorescent probe, Indo-1 AM, and increased the occurrence of ectopic diastolic Ca2+ waves. Acute application of S44121 (10 μM for 15 min) reduced Ca2+ sparks frequency. Chronic treatment of mice with S44121 also normalized the frequency of Ca2+ sparks and of ectopic Ca2+ waves, and corrected diastolic cellular Ca2+ overload. Effects were maximal at 20 mg/kg/day. Furthermore, treatment with S44121 abolished Ca2+ waves promoted by β-adrenergic challenge (acute application of isoproterenol, 10 nM). The potential anti-arrhythmic benefit of S44121 was assessed in vivo using telemetric surface electrocardiograms. S44121 had no effect on ECG intervals and did not alter the heart rate. However, anti-arrhythmic effects were confirmed by observation of a dose-dependent reduction of spontaneous ventricular extrasystoles and ventricular tachycardia. Near maximum benefits were observed at 10 mg/kg/day, both in basal conditions or following a challenge with acute treatment of isoproterenol (0.5 mg/kg, dosed ip). Conclusion: In mice with post-ischemic HF, treatment with S44121 prevented the abnormal diastolic SR Ca2+ leak and ectopic Ca2+ waves, and reduced ventricular arrhythmias.


2021 ◽  
Vol 7 ◽  
Author(s):  
Hélène David ◽  
Aurore Ughetto ◽  
Philippe Gaudard ◽  
Maëlle Plawecki ◽  
Nitchawat Paiyabhroma ◽  
...  

Aims: Microvascular alterations occurring after myocardial infarction (MI) may represent a risk factor for multi-organ failure. Here we used in vivo photoacoustic (PA) imaging to track and define the changes in vascular oxygen saturation (sO2) occurring over time after experimental MI in multiple peripheral organs and in the brain.Methods and Results: Experimental MI was obtained in BALB/c mice by permanent ligation of the left anterior descending artery. PA imaging (Vevo LAZR-X) allowed tracking mouse-specific sO2 kinetics in the cardiac left ventricular (LV) anterior wall, brain, kidney, and liver at 4 h, 1 day, and 7 days post-MI. Here we reported a correlation between LV sO2 and longitudinal anterior myocardial strain after MI (r = −0.44, p < 0.0001, n = 96). Acute LV dysfunction was associated with global hypoxia, specifically a decrease in sO2 level in the brain (−5.9%), kidney (−6.4%), and liver (−7.3%) at 4 and 24 h post-MI. Concomitantly, a preliminary examination of capillary NG2DsRed pericytes indicated cell rarefication in the heart and kidney. While the cardiac tissue was persistently impacted, sO2 levels returned to pre-MI levels in the brain and in peripheral organs 7 days after MI.Conclusions: Collectively, our data indicate that experimental MI elicits precise trajectories of vascular hypoxia in peripheral organs and in the brain. PA imaging enabled the synchronous tracking of oxygenation in multiple organs and occurring post-MI, potentially enabling a translational diagnostic modality for the identification of vascular modifications in this disease setting.


Endocrinology ◽  
2010 ◽  
Vol 152 (2) ◽  
pp. 669-679 ◽  
Author(s):  
Christine J. Pol ◽  
Alice Muller ◽  
Marian J. Zuidwijk ◽  
Elza D. van Deel ◽  
Ellen Kaptein ◽  
...  

Abstract Similarities in cardiac gene expression in hypothyroidism and left ventricular (LV) pathological remodeling after myocardial infarction (MI) suggest a role for impaired cardiac thyroid hormone (TH) signaling in the development of heart failure. Increased ventricular activity of the TH-degrading enzyme type 3 deiodinase (D3) is recognized as a potential cause. In the present study, we investigated the cardiac expression and activity of D3 over an 8-wk period after MI in C57Bl/6J mice. Pathological remodeling of the noninfarcted part of the LV was evident from cardiomyocyte hypertrophy, interstitial fibrosis, and impairment of contractility. These changes were maximal and stable from the first week onward, as was the degree of LV dilation. A strong induction of D3 activity was found, which was similarly stable for the period examined. Plasma T4 levels were transiently decreased at 1 wk after MI, but T3 levels remained normal. The high D3 activity was associated with increased D3 mRNA expression at 1 but not at 4 and 8 wk after MI. Immunohistochemistry localized D3 protein to cardiomyocytes. In vivo measurement of TH-dependent transcription activity in cardiomyocytes using a luciferase reporter assay indicated a 48% decrease in post-MI mice relative to sham-operated animals, and this was associated with a 50% decrease in LV tissue T3 concentration. In conclusion, pathological ventricular remodeling after MI in the mouse leads to high and stable induction of D3 activity in cardiomyocytes and a local hypothyroid condition.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
HuiYa Li ◽  
DanQing Hu ◽  
Guilin Chen ◽  
DeDong Zheng ◽  
ShuMei Li ◽  
...  

AbstractBoth weak survival ability of stem cells and hostile microenvironment are dual dilemma for cell therapy. Adropin, a bioactive substance, has been demonstrated to be cytoprotective. We therefore hypothesized that adropin may produce dual protective effects on the therapeutic potential of stem cells in myocardial infarction by employing an adropin-based dual treatment of promoting stem cell survival in vitro and modifying microenvironment in vivo. In the current study, adropin (25 ng/ml) in vitro reduced hydrogen peroxide-induced apoptosis in rat bone marrow mesenchymal stem cells (MSCs) and improved MSCs survival with increased phosphorylation of Akt and extracellular regulated protein kinases (ERK) l/2. Adropin-induced cytoprotection was blocked by the inhibitors of Akt and ERK1/2. The left main coronary artery of rats was ligated for 3 or 28 days to induce myocardial infarction. Bromodeoxyuridine (BrdU)-labeled MSCs, which were in vitro pretreated with adropin, were in vivo intramyocardially injected after ischemia, following an intravenous injection of 0.2 mg/kg adropin (dual treatment). Compared with MSCs transplantation alone, the dual treatment with adropin reported a higher level of interleukin-10, a lower level of tumor necrosis factor-α and interleukin-1β in plasma at day 3, and higher left ventricular ejection fraction and expression of paracrine factors at day 28, with less myocardial fibrosis and higher capillary density, and produced more surviving BrdU-positive cells at day 3 and 28. In conclusion, our data evidence that adropin-based dual treatment may enhance the therapeutic potential of MSCs to repair myocardium through paracrine mechanism via the pro-survival pathways.


2016 ◽  
Vol 22 (8) ◽  
pp. S60
Author(s):  
Ike S. Okwuosa ◽  
Oluseyi Ojeifo ◽  
Lindsey Hasting-Spaine ◽  
Stuart D. Russell ◽  
Monica Mukherjee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document