Fine Structure of Cytochalasin Induced Polyploid Cells

Author(s):  
Awtar Krishan ◽  
Nestor Bohonos

Cytochalasin B, a mould metabolite from Helminthosporium dermatioideum has been shown to interfere with specific cell activities such as cytoplasmic cleavage and cell movement. Cells undergoing nuclear division in the presence of cytochalasin B are unable to complete the separation of the resulting daughter cells. In time-lapse studies, the daughter cells coalesce after an initial unsuccessful attempt at separation and form large multinucleate polyploid cells. The present report describes the fine structure of the large polyploid cells induced in Earle's L-cell monolayer cultures by exposure to cytochalasin B (lγ/ml) for 92 hours.In the present material we have seen as many as 7 nuclei in these polyploid cells. Treatment with cytochalasin B for longer periods of time (6 to 7 days, with one medium change on the 3rd day) did not increase the number of nuclei beyond the 7 nuclei stage. Figure 1 shows a large polyploid cell with four nuclei. These nuclei are indistinguishable in their fine structure from those of the cells from control cultures but often show unusually large numbers of cytoplasmic invaginations and extensions of the nuclear surface (Figure 2).

Author(s):  
Ariaki Nagayama

Vinblastine(Vb) or vincristine, alkaloid derived from Vinca rosea is known for its antimitotic activity by regrouping of microtubules into paracrystalline form within the cells. A rapid purification method of vinblastine-induced microtubular paracrystals(PC) has provided us with a fresh and pure microtubular material demonstrating the presence of a labile ATPase associated with the PC. The present report is concerned with the fine structure of purified microtubules of mammalian cultured cells.Confluent monolayer cultures of L cells were incubated for 20hrs with 10-5 M Vb (donated from Shionogi Seiyaku & Co., Osaka, Japan).


1979 ◽  
Vol 81 (1) ◽  
pp. 123-136 ◽  
Author(s):  
N Agabian ◽  
M Evinger ◽  
G Parker

An essential event in developmental processes is the introduction of asymmetry into an otherwise undifferentiated cell population. Cell division in Caulobacter is asymmetric; the progeny cells are structurally different and follow different sequences of development, thus providing a useful model system for the study of differentiation. Because the progeny cells are different from one another, there must be a segregation of morphogenetic and informational components at some time in the cell cycle. We have examined the pattern of specific protein segregation between Caulobacter stalked and swarmer daughter cells, with the rationale that such a progeny analysis would identify both structurally and developmentally important proteins. To complement the study, we have also examined the pattern of protein synthesis during synchronous growth and in various cellular fractions. We show here, for the first time, that the association of proteins with a specific cell type may result not only from their periodicity of synthesis, but also from their pattern of distribution at the time of cell division. Several membrane-associated and soluble proteins are segregated asymmetrically between progeny stalked and swarmer cells. The data further show that a subclass of soluble proteins becomes associated with the membrane of the progeny stalked cells. Therefore, although the principal differentiated cell types possess different synthetic capabilities and characteristic proteins, the asymmetry between progeny stalked and swarmer cells is generated primarily by the preferential association of specific soluble proteins with the membrane of only one daughter cell. The majority of the proteins which exhibit this segregation behavior are synthesized during the entire cell cycle and exhibit relatively long, functional messenger RNA half-lives.


1994 ◽  
Vol 127 (4) ◽  
pp. 1085-1096 ◽  
Author(s):  
S M Frisch

Cells closely resembling epithelia constitute the first specific cell type in a mammalian embryo. Many other cell types emerge via epithelial-mesenchymal differentiation. The transcription factors and signal transduction pathways involved in this differentiation are being elucidated. I have previously reported (Frisch, 1991) that adenovirus E1a is a tumor suppressor gene in certain human cell lines. In the present report, I demonstrate that E1a expression caused diverse human tumor cells (rhabdomyosarcoma, fibrosarcoma, melanoma, osteosarcoma) and fibroblasts to assume at least two of the following epithelial characteristics: (a) epithelioid morphology; (b) epithelial-type intercellular adhesion proteins localized to newly formed junctional complexes; (c) keratin-containing intermediate filaments; and (d) down-regulation of non-epithelial genes. E1a thus appeared to partially convert diverse human tumor cells into an epithelial phenotype. This provides a new system for molecular analysis of epithelial-mesenchymal interconversions. This effect may also contribute to E1a's tumor suppression activity, possibly through sensitization to anoikis (Frisch, S.M., and H. Francis, 1994. J. Cell Biol. 124:619-626).


2015 ◽  
Vol 27 (1) ◽  
pp. 132
Author(s):  
L. P. Sepulveda-Rincon ◽  
D. Dube ◽  
P. Adenot ◽  
L. Laffont ◽  
S. Ruffini ◽  
...  

The first lineage specification occurs during pre-implantation mammalian development. At the blastocyst stage, 2 cell lineages can be distinguished: the inner cell mass (ICM) and the trophectoderm (TE). The exact timing when embryo cells are skewed to these lineages is not clearly determined in mammalian species. In murine embryos, it has been suggested that the first cleavage plane might be related to the embryonic-abembryonic (Em-Ab) axis at blastocyst stage. Thus, the daughter cells of the 2-cell embryo might already be predisposed to a specific cell lineage further on development. The objective of the present study was to observe how the first cleavage in bovine embryos may be related to cell lineage allocation at the blastocyst stage, using a noninvasive tracing approach. Bovine oocytes were harvested, in vitro matured, and fertilised. At the 2-cell stage, embryos were injected in one blastomere with the membrane tracer DiI. At the blastocyst stage, embryos (n = 346) were classified as orthogonal when the Em-Ab axis was orthogonally divided by the borderline between labelled and non-labelled cells; as deviant if the borderline was overlapping the Em-Ab axis; and as random when the labelled and non-labelled cells were randomly distributed. Total cell count (TCC) and the ICM/TE ratio was allowed by DNA staining with 4′,6-diamidino-2-phenylindole (DAPI) and by immunostaining of the ICM with Sox2 antibody. Analysis of variance was performed by one-way ANOVA employing IBM SPSS v21 (SPSS Inc., Chicago, IL, USA) to determine any difference between the cell lineage allocation patterns, TCC, and the ICM/TE ratio. P-values = 0.05 were considered significant. All values are reported as mean ± standard error of mean. Within 40 repetitions, the blastocyst classification was as follows: orthogonal 14.9% (±2.32, n = 56), deviant 22.2% (±2.58, n = 80), and random 62.9% (±2.64, n = 210). A significant difference was found in the incidence between the random group against the orthogonal and deviant, but not between the latter two. Regarding TCC, a significant difference was observed only between the orthogonal (99.6 ± 11.7 cells, n = 15) and deviant (135 ± 7.3 cells, n = 25) groups, but not with random embryos (116 ± 5.5 cells, n = 42). Finally, no significant difference was found among the groups concerning the ICM/TE ratio (0.43 ± 0.07 for orthogonal, n = 7; 0.54 ± 0.06 for deviant, n = 14; and 0.40 ± 0.03 for random embryos, n = 26). In conclusion, bovine embryos present a marked tendency for a random distribution of the daughter cells derived from the 2-cell blastomeres. However, around 37% of the blastocysts present a patterned cell division, where the daughter cells remain together through pre-implantation development. The effect of these cell lineage allocation patterns on implantation and further embryo development needs to be addressed.The authors acknowledge Laboratoire d'Excellence Revive (Investissement d'Avenir, ANR-10-LABX-73) and CONACyT Mexico for funding.


1988 ◽  
Vol 89 (3) ◽  
pp. 405-413
Author(s):  
J. Overton

Chick corneal epithelium takes on its mature conformation between 11 and 16 days of incubation. Earlier work has shown that desmosome frequency increases during this period, reaching its highest rate at 15 1/2 days. In the present report aggregation rates of cells from embryos of 11 days and those of 15 1/2 days are compared. Younger cells, which form fewer desmosomes, aggregate at a more moderate rate than older cells. In addition, younger cells bind less concanavalin A (ConA) than older cells. To determine if increase in ConA binding could be related to these cellular responses, aggregating cells were exposed to endoglycosidase H (EndoH) and to deoxymannojirimycin. This treatment should permit comparison of the response of cells that have a normal complement of N-linked oligosaccharides with those that have reduced high-mannose or complex type sugars. The effectiveness of EndoH under the conditions used was confirmed by failure of treated glycoprotein after separation by SDS-PAGE and electroblotting to bind ConA. Aggregation rates of both older and younger cells were unaffected, as measured by disapperance of single cells, though older cells formed somewhat smaller aggregates at the highest dosage used. Desmosome formation was markedly reduced in the presence of the enzyme, even in the absence of other changes in the fine structure. At the highest dose of the enzyme the fine structure of older but not younger cells showed indications of blockage of transport. Deoxymannojirimycin appears to cause a build-up of high-mannose groups, since treated cells showed increased incorporation of [3H]mannose.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 106 (3) ◽  
pp. 719-730
Author(s):  
M. Jimenez ◽  
C. Goday

The distribution of antigens to two antibodies (Bx63 and Rb188) that associate to Drosophila melanogaster centrosomes has been investigated in the nematode Parascaris. By western blot analysis both antibodies identify in Parascaris polypeptides of the same molecular mass as in Drosophila (Rb188 a 185 kDa antigen and Bx63 185 kDa and 66 kDa antigens). By immunocytochemistry we show that the centrosomes of Parascaris contain the 185 kDa antigen recognized by polyclonal Rb188 and monoclonal Bx63 antibodies. In addition, Bx63 reveals cytoplasmic midzone structures, not found in Drosophila, that display a cell cycle-dependent organization in embryos. These structures, which most probably contain the 66 kDa antigen revealed by Bx63, appear at the onset of anaphase as fibrillar-like structures that during anaphase form a ring-like structure encircling the equatorial plane of the blastomere. Before furrowing, the antigen participates in the formation of the midbody and associates with convergent polar microtubules. After blastomere division, Bx63 signal persists as a single body between the daughter cells. The analysis of chilled and nocodazole-treated embryos suggests that the localization of the midzone Bx63 antigen is dependent on non-kinetochore microtubules. Inhibition of furrowing by cytochalasin B shows that the antigen persists after the disassembly of microfilaments. Cytological observations of contractile ring and Bx63 ring assembly indicate that both structures do not simultaneously colocalize at the equatorial zone. The data suggest a spindle-dependent distribution of the Bx63 antigen during cytokinesis. We discuss the participation of this antigen in the organization of the midbody before furrowing, and consider the possible relevance of the midbody with respect to cell to cell communication during early development in nematodes.


2021 ◽  
Author(s):  
Mercè Gomar-Alba ◽  
Vasilisa Pozharskaia ◽  
Celia Schaal ◽  
Arun Kumar ◽  
Basile Jacquel ◽  
...  

AbstractNuclear pore complexes (NPCs) mediate communication between the nucleus and the cytoplasm and regulate gene expression by interacting with transcription and mRNA export factors. Lysine acetyl-transferases (KATs) promote transcription through acetylation of chromatin-associated proteins. We find that Esa1, the KAT subunit of the yeast NuA4 complex, also acetylates the nuclear pore basket component Nup60 to promote mRNA export. Acetylation of Nup60 recruits mRNA export factors to the nuclear basket, including the scaffolding subunit of the Transcription and Export 2 (TREX-2) complex, Sac3. Esa1-dependent nuclear export of mRNAs promotes entry into S phase, and is inhibited by the Hos3 deacetylase in G1 daughter cells to restrain their premature commitment to a new cell division cycle. This mechanism also inhibits expression of the nutrient-regulated GAL1 gene specifically in daughter cells. These results reveal how acetylation contributes to the functional plasticity of NPCs in specific cell types, and demonstrate how the evolutionarily conserved NuA4 complex regulates gene expression dually at the level of transcription and mRNA export, by modifying the nucleoplasmic entrance to nuclear pores.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 888 ◽  
Author(s):  
Chen ◽  
Liu ◽  
Huang ◽  
Li ◽  
Zhao ◽  
...  

Multipolar divisions of heated cells has long been thought to stem from centrosome aberrations of cells directly caused by heat stress. In this paper, through long-term live-cell imaging, we provide direct cellular evidences to demonstrate that heat stress can promote multiple multipolar divisions of MGC-803 and MCF-7 cells. Our results show that, besides facilitating centrosome aberration, polyploidy induced by heat stress is another mechanism that causes multipolar cell divisions, in which polyploid cancer cells engendered by mitotic slippage, cytokinesis failure, and cell fusion. Furthermore, we also find that the fates of theses polyploid cells depend on their origins, in the sense that the polyploid cells generated by mitotic slippage experience bipolar divisions with a higher rate than multipolar divisions, while those polyploid cells induced by both cytokinesis failure and cell fusion have a higher frequency of multipolar divisions compared with bipolar divisions. This work indicates that heat stress-induced multiple multipolar divisions of cancer cells usually produce aneuploid daughter cells, and might lead to genetically unstable cancer cells and facilitate tumor heterogeneity.


2017 ◽  
Vol 29 (1) ◽  
pp. 132
Author(s):  
L. Ferré ◽  
C. Fresno ◽  
M. Kjelland ◽  
P. Ross

The ability to freeze in vitro-produced bovine embryos with a high post-thaw viability is still problematic and hampers logistics of on-farm embryo transfer. The objectives of this experiment were to compare different stages of development, freezing methods, and addition of cytoskeletal stabilisers (cytochalasin-B) before freezing. Ovaries were collected from an abattoir and oocytes aspirated from 2- to 6-mm follicles. Cumulus-oocyte complexes containing compact and complete cumulus cell layers were selected and matured in groups of 50 in 400 µL of M199 medium supplemented with ALA-glutamine (0.1 mM), Na pyruvate (0.2 mM), gentamicin (5 µg mL−1), EGF (50 ng mL−1), ovine FSH (50 ng mL−1), bLH (3 µg mL−1), cysteamine (0.1 mM), and 10% fetal bovine serum (FBS) for 22 to 24 h. Fertilization (Day 0) was done using female sex-sorted semen selected with a discontinuous density gradient and diluted to a final concentration of 1 × 106 sperm/mL. Synthetic oviductal fluid (SOF)-FERT medium was supplemented with fructose (90 µg mL−1), penicillamine (3 µg mL−1), hypotaurine (11 µg mL−1), and heparin (20 µg mL−1). After 18 h, presumptive zygotes were denuded and cultured in groups of 15 to 20 in 50-µL drops of SOF-BSA for 7 days. On Day 3.5 post-fertilization, 3% FBS was added. Low oxygen tension (5% O2) was used for culture. Morulae were selected at Day 5.5–6, blastocysts at Day 6–6.5, and expanded blastocysts at Day 6.5–7. Embryo harvesting for each stage was performed from a dedicated drop/dish and discarded in order to avoid further embryo stage collections. Grade 1 morulae, blastocysts, and expanded blastocysts were selected for freezing and placed randomly into 2 groups: slow-freezing and vitrification. Before freezing, half of the embryos from each stage were exposed to cytochalasin-B for 45 min. The slow freezing protocol consisted of 1.5 M ethylene glycol (EG) + 20% FBS + 0.4% BSA, and the cooling rate was 0.5°C/min. Slow-frozen embryo thawing was performed by exposing the 0.25-mL straws to air (23°C) for 10 s and then underwater at 35°C for 1 min. The vitrification (Cryo-Top) medium was 15% (vol/vol) EG + propylene glycol. Vitrified embryos were thawed in a solution of H199 + 20% FBS and 0.25 M sucrose at 39°C. Thawed embryos from both groups were cultured in SOF-BSA + 10% FBS under cumulus/granulosa cell monolayer co-culture. Embryo assessment involved post-thaw survival (0 h), re-expansion, and hatching of the zona pellucida (72 h). Three replicates were performed for each treatment level. Fisher’s l.s.d. test with Bonferroni correction was used to determine treatment differences (P < 0.05). The post-thaw survival, re-expansion, and hatching results showed that either expanded blastocysts (84.7 ± 3.2%, 74.1 ± 3.9%, and 60.9 ± 4.4%) or blastocysts (81.7 ± 3.5%, 69.6 ± 4.2%, and 55 ± 4.6%) were preferred (P < 0.05) embryo stages for cryopreservation compared with morulae (67.6 ± 4.4%, 52.5 ± 4.6%, and 33.2 ± 4.3%). Vitrification and cytochalasin-B pre-freezing exposure (61.3 ± 3.6% and 56.6 ± 3.8%) provided better (P < 0.05) hatching results compared with slow-freezing and without cytochalasin-B (37.8 ± 3.6% and 42.5 ± 3.7%).


Author(s):  
Robert R. Cardell

The fine structure of five cell types in the pars distalis of the salamander [Notophthalmus (Triturus) viridescens viridescens] pituitary gland has been described. Four of these possess characteristic secretory granules (figure 1) and apparently they are involved in the synthesis and secretion of pituitary hormones. The other cell (Cell type #5 or “stellate cell”) does not possess characteristic secretory granules (figures 1 and 2) and they show a morphology which does not suggest a secretory function. The present report extends the observations on the fine structure of the stellate cell and considers, in addition, the distribution of this cell throughout the pars distalis.The stellate cell displays many slender, cytoplasmic extensions which penetrate between the secretory cells (figure 1). These extensions contact processes from other stellate cells and desmosomes are found at the points of contact. Moreover, desmosomes are frequently located between the stellate cells and the secretory cells (figure 2). Thus, the stellate cells are not only linked to each other throughout the pars distalis, but to each secretory cell as well. Stellate cell processes contact the outer basement lamina of the pericapillary space and often such processes follow the contour of the basement lamina for considerable distances. They do not penetrate, however, into the pericapillary space.


Sign in / Sign up

Export Citation Format

Share Document