Rational design of n-Bi12TiO20@p-BiOI core–shell heterojunction for boosting photocatalytic NO removal

2022 ◽  
Vol 607 ◽  
pp. 242-252
Author(s):  
Hongxia Liu ◽  
Hui Mei ◽  
Shiping Li ◽  
Longkai Pan ◽  
Zhipeng Jin ◽  
...  
Author(s):  
Dai Jiu Yi ◽  
Soram Bobby Singh ◽  
Nam Hoon Kim ◽  
Joong Hee Lee

The rational design of free-standing hierarchic core–shell nanoporous architectures is a good strategy for fabricating next-generation electrode materials for application to electrochemical energy conversion/storage systems. Herein, hierarchical core–shell 3D Co9S8@Nix:Moy–Se...


2017 ◽  
Vol 56 (37) ◽  
pp. 10251-10258 ◽  
Author(s):  
Meijuan Chen ◽  
Yan Li ◽  
Zhenyu Wang ◽  
Yunxia Gao ◽  
Yu Huang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3347
Author(s):  
Yali Guo ◽  
Anzhou Xu ◽  
Juan Hou ◽  
Qingcui Liu ◽  
Hailong Li ◽  
...  

Ag–Au core–shell triangular nanoprisms (Ag@Au TNPs) have aroused extensive research interest in the field of hydrogen evolution reaction (HER) due to their strong plasmon effect and stability. Here, Ag@Au TNPs were fabricated by the galvanic-free replacement method. Then, we loaded them on protonated g-C3N4 nanoprisms (P–CN) by the electrostatic self-assembly method as an efficient plasmonic photocatalyst for HER. The hydrogen production rate of Ag@Au TNPs/P–CN (4.52 mmol/g/h) is 4.1 times higher than that of P–CN (1.11 mmol/g/h) under simulated sunlight irradiation, making it the most competitive material for water splitting. The formed Schottky junction helps to trap the hot electrons generated from Ag@Au TNPs, and the well-preserved tips of the Ag@Au TNPs can effectively generate an electromagnetic field to inhibit the photogenerated electron–holes pairs recombination. This study suggests that the rational design of Ag@Au TNPs by the galvanic-free replacement method is an effective co-catalyst for HER and boosting the additional combination of plasmonic metals and catalyst metals for the enhancement to HER.


2016 ◽  
Vol 9 (10) ◽  
pp. 3113-3119 ◽  
Author(s):  
Hongxiu Zhang ◽  
Qi Ding ◽  
Denghong He ◽  
Hu Liu ◽  
Wei Liu ◽  
...  

We report the rational design and successful preparation of p-Si/NiCoSex core/shell nanopillar array photocathodes for enhanced solar-driven photoelectrochemical hydrogen generation.


2018 ◽  
Vol 47 (41) ◽  
pp. 14540-14548 ◽  
Author(s):  
Peng Huang ◽  
Ming Zhao ◽  
Bo Jin ◽  
Huan Li ◽  
Zhi Zhu ◽  
...  

With the depletion of fossil energy and rapid development of electronic equipment, the commercial lithium-ion batteries (LIBs) do not meet the current energy demand.


2021 ◽  
Author(s):  
Jingjie Ge ◽  
Riccardo Ruixi Chen ◽  
Xiao Ren ◽  
Xia Li ◽  
Jiawei Liu ◽  
...  

<p>Rational design of active oxygen evolution reaction (OER) catalysts is critical for the overall efficiency of water electrolysis. OER reactants and products’ differing spin states is one of causes to slow OER kinetics. Thus, spin conservation plays a crucial role in enhancing OER performance. In this work, we design ferromagnetic (FM)–antiferromagnetic (AFM) Fe<sub>3</sub>O<sub>4</sub>@Ni(OH)<sub>2</sub> core–shell catalysts. The interfacial FM–AFM coupling of these catalysts facilitates selective removal of electrons with spin direction opposing the magnetic moment of FM core, improving OER kinetics. The shell thickness is found critical in retaining the coupling effect for OER enhancement. The magnetic domain structure of the FM core also plays a critical role. With a multiple domain core, the applied magnetic field aligns the magnetic domains, optimising the electron transport process. A significant enhancement of OER activity is observed for the multiple domain core catalysts. With a single domain FM core with ordered magnetic dipoles, the spin-selective electron transport with minimal scattering is facilitated even without an applied magnetic field. We therefore draw a magnetism/OER activity model that depends on two main parameters: interfacial spin coupling and domain structure. Our findings provide new design principles for active OER catalysts.</p>


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenfu Xie ◽  
Jianming Li ◽  
Yuke Song ◽  
Shijin Li ◽  
Jianbo Li ◽  
...  

AbstractZinc–air batteries (ZABs) hold tremendous promise for clean and efficient energy storage with the merits of high theoretical energy density and environmental friendliness. However, the performance of practical ZABs is still unsatisfactory because of the inevitably decreased activity of electrocatalysts when assembly into a thick electrode with high mass loading. Herein, we report a hierarchical electrocatalyst based on carbon microtube@nanotube core–shell nanostructure (CMT@CNT), which demonstrates superior electrocatalytic activity for oxygen reduction reaction and oxygen evolution reaction with a small potential gap of 0.678 V. Remarkably, when being employed as air–cathode in ZAB, the CMT@CNT presents an excellent performance with a high power density (160.6 mW cm−2), specific capacity (781.7 mAhg Zn −1 ) as well as long cycle stability (117 h, 351 cycles). Moreover, the ZAB performance of CMT@CNT is maintained well even under high mass loading (3 mg cm−2, three times as much as traditional usage), which could afford high power density and energy density for advanced electronic equipment. We believe that this work is promising for the rational design of hierarchical structured electrocatalysts for advanced metal-air batteries.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Debadrita Paria ◽  
Chi Zhang ◽  
Ishan Barman

Abstract In biology, sensing is a major driver of discovery. A principal challenge is to create a palette of probes that offer near single-molecule sensitivity and simultaneously enable multiplexed sensing and imaging in the “tissue-transparent” near-infrared region. Surface-enhanced Raman scattering and metal-enhanced fluorescence have shown substantial promise in addressing this need. Here, we theorize a rational design and optimization strategy to generate nanostructured probes that combine distinct plasmonic materials sandwiching a dielectric layer in a multilayer core shell configuration. The lower energy resonance peak in this multi-resonant construct is found to be highly tunable from visible to the near-IR region. Such a configuration also allows substantially higher near-field enhancement, compared to a classical core-shell nanoparticle that possesses a single metallic shell, by exploiting the differential coupling between the two core-shell interfaces. Combining such structures in a dimer configuration, which remains largely unexplored at this time, offers significant opportunities not only for near-field enhancement but also for multiplexed sensing via the (otherwise unavailable) higher order resonance modes. Together, these theoretical calculations open the door for employing such hybrid multi-layered structures, which combine facile spectral tunability with ultrahigh sensitivity, for biomolecular sensing.


Sign in / Sign up

Export Citation Format

Share Document