Intumescent flame retardants inspired template-assistant synthesis of N/P dual-doped three-dimensional porous carbons for high-performance supercapacitors

Author(s):  
Xiaodong Xu ◽  
Ting Wang ◽  
Yanliang Wen ◽  
Xin Wen ◽  
Xuecheng Chen ◽  
...  
2021 ◽  
Author(s):  
Feiqiang Guo ◽  
Yinbo Zhan ◽  
Xiaopeng Jia ◽  
Huiming Zhou ◽  
Shuang Liang ◽  
...  

Using Sargassum as the precursor, a novel approach was developed to synthesize three-dimensional porous carbons as high-performance electrode materials for supercapacitors via KOH activation and subsequent nitrogen-doping employing melamine as...


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2648 ◽  
Author(s):  
Kuruma Malkappa ◽  
Jayita Bandyopadhyay ◽  
Suprakas Ray

Polylactide (PLA) is one of the most widely used organic bio-degradable polymers. However, it has poor flame retardancy characteristics. To address this disadvantage, we performed melt-blending of PLA with intumescent flame retardants (IFRs; melamine phosphate and pentaerythritol) in the presence of organically modified montmorillonite (OMMT), which resulted in nanobiocomposites with excellent intumescent char formation and improved flame retardant characteristics. Triphenyl benzyl phosphonium (OMMT-1)- and tributyl hexadecyl phosphonium (OMMT-2)-modified MMTs were used in this study. Thermogravimetric analysis in combination with Fourier transform infrared spectroscopy showed that these nanocomposites release a smaller amount of toxic gases during thermal degradation than unmodified PLA. Melt-rheological behaviors supported the conclusions drawn from the cone calorimeter data and char structure of the various nanobiocomposites. Moreover, the characteristic of the surfactant used for the modification of MMT played a crucial role in controlling the fire properties of the composites. For example, the nanocomposite containing 5 wt.% OMMT-1 showed significantly improved fire properties with a 47% and 68% decrease in peak heat and total heat release rates, respectively, as compared with those of unmodified PLA. In summary, melt-blending of PLA, IFR, and OMMT has potential in the development of high-performance PLA-based sustainable materials.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 229 ◽  
Author(s):  
Lu Liu ◽  
Wei Wang ◽  
Yongqian Shi ◽  
Libi Fu ◽  
Lulu Xu ◽  
...  

Manganese dioxide (MnO2), as a promising green material, has recently attracted considerable attention of researchers from various fields. In this work, a facile method was introduced to prepare binary hybrids by fabricating three-dimensional (3D) zinc hydroxystannate (ZHS) cubes on two-dimensional (2D) MnO2 nanosheets towards excellent flame retardancy and toxic effluent elimination of epoxy (EP) resin. Microstructural analysis confirmed that the morphologies and structures of MnO2@ZHS binary hybrids were well characterized, implying the successful synthesis. Additionally, the morphological characterization indicated that MnO2@ZHS binary hybrids could achieve satisfactory interfacial interaction with the EP matrix and be well dispersed in nanocomposites. Cone calorimeter test suggested that MnO2@ZHS binary hybrids effectively suppressed the peak of heat release rate and total heat release of EP nanocomposites, performing better than MnO2 or ZHS alone. Condensed-phase analysis revealed that MnO2@ZHS binary hybrids could promote the char density and graphitization degree of char residues and thereby successfully retard the permeation of oxygen and flammable gases. Moreover, through the analysis of gas phase, it can be concluded that MnO2@ZHS binary hybrids could efficiently suppress the production of toxic gases during the degradation of EP nanocomposites. This work implies that the construction of 2D/3D binary hybrids with an interfacial interaction is an effective way to fabricate high-performance flame retardants for EP.


Nano Energy ◽  
2018 ◽  
Vol 47 ◽  
pp. 547-555 ◽  
Author(s):  
Gongyuan Zhao ◽  
Chong Chen ◽  
Dengfeng Yu ◽  
Lei Sun ◽  
Chenhui Yang ◽  
...  

Author(s):  
Lee D. Peachey ◽  
Lou Fodor ◽  
John C. Haselgrove ◽  
Stanley M. Dunn ◽  
Junqing Huang

Stereo pairs of electron microscope images provide valuable visual impressions of the three-dimensional nature of specimens, including biological objects. Beyond this one seeks quantitatively accurate models and measurements of the three dimensional positions and sizes of structures in the specimen. In our laboratory, we have sought to combine high resolution video cameras with high performance computer graphics systems to improve both the ease of building 3D reconstructions and the accuracy of 3D measurements, by using multiple tilt images of the same specimen tilted over a wider range of angles than can be viewed stereoscopically. Ultimately we also wish to automate the reconstruction and measurement process, and have initiated work in that direction.Figure 1 is a stereo pair of 400 kV images from a 1 micrometer thick transverse section of frog skeletal muscle stained with the Golgi stain. This stain selectively increases the density of the transverse tubular network in these muscle cells, and it is this network that we reconstruct in this example.


2020 ◽  
Author(s):  
Peiyao Wang ◽  
Bangchuan Zhao ◽  
Jin Bai ◽  
Kunzhen Li ◽  
Hongyang Ma ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


Author(s):  
Tingting Xia ◽  
Chengfei Xu ◽  
Pengfei Dai ◽  
Xiaoyun Li ◽  
Riming Lin ◽  
...  

Three-dimensional (3D) conductive polymers are promising conductive matrices for electrode materials toward electrochemical energy storage. However, their fragile nature and weak binding forces with active materials could not guarantee long-term...


Sign in / Sign up

Export Citation Format

Share Document