Nitrate retention and physiological adjustment of maize to soil amendment with superabsorbent polymers

2013 ◽  
Vol 52 ◽  
pp. 474-480 ◽  
Author(s):  
A. Egrinya Eneji ◽  
Robiul Islam ◽  
P. An ◽  
U.C. Amalu
2013 ◽  
Vol 96 (1) ◽  
pp. 85-94 ◽  
Author(s):  
M.O. Ekebafe ◽  
L.O. Ekebafe ◽  
M. Maliki

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6658
Author(s):  
Michał Śpitalniak ◽  
Adam Bogacz ◽  
Zofia Zięba

Soil amendments are substances added to the soil for moisture increment or physicochemical soil process enhancement. This study aimed to assess the water conservation efficiency of available organic soil amendments like bentonite, attapulgite, biochar and inorganics like superabsorbent polymer, and nonwoven geotextile in relation to the newly developed water absorbing geocomposite (WAG) and its biodegradable version (bioWAG). Soil amendments were mixed with loamy sand soil, placed in 7.5 dm3 pots, then watered and dried in controlled laboratory conditions during 22-day long drying cycles (pot experiment). Soil moisture was recorded in three locations, and matric potential was recorded in one location during the drying process. The conducted research has confirmed that the addition of any examined soil amendment in the amount of 0.7% increased soil moisture, compared to control, depending on measurement depth in the soil profile and evaporation stage. The application of WAG as a soil amendment resulted in higher soil moisture in the centre and bottom layers, by 5.4 percent point (p.p.) and 6.4 p.p. on day 4 and by 4.5 p.p. and 8.8 p.p. on day 7, respectively, relative to the control samples. Additionally, an experiment in a pressure plate extractor was conducted to ensure the reliability of the obtained results. Soil density and porosity were also recorded. Samples containing WAG had water holding capacity at a value of −10 kPa higher than samples with biochar, attapulgite, bentonite, bioWAG and control by 3.6, 2.1, 5.7, 1 and 4.5 percentage points, respectively. Only samples containing superabsorbent polymers and samples with nonwoven geotextiles had water holding capacity at a value of −10 kPa higher than WAG, by 14.3 and 0.1 percentage points, respectively. Significant changes were noted in samples amended with superabsorbent polymers resulting in a 90% soil sample porosity and bulk density decrease from 1.70 g∙cm−3 to 1.14 g∙cm−3. It was thus concluded that the water absorbing geocomposite is an advanced and most efficient solution for water retention in soil.


EDIS ◽  
2013 ◽  
Vol 2013 (11) ◽  
Author(s):  
Michael A. Davis ◽  
Doug R. Sloan ◽  
Gerald Kidder ◽  
R. D. Jacobs

Animal manures have been used as natural crop fertilizers for centuries. Because of poultry manure’s high nitrogen content, it has long been recognized as one of the most desirable manures. Besides fertilizing crops, manures also supply other essential plant nutrients and serve as a soil amendment by adding organic matter, which helps improve the soil’s moisture and nutrient retention. Organic matter persistence will vary with temperature, drainage, rainfall, and other environmental factors. This 2-page fact sheet was written by Michael A. Davis, D.R. Sloan, Gerald Kidder, and R.D. Jacobs, and published by the UF Department of Animal Science, November 2013. http://edis.ifas.ufl.edu/aa205


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 492c-492
Author(s):  
Chris Ely ◽  
Mark A. Hubbard

Azomite is a mined, commercially available, hydrated sodium calcium aluminosiliclate soil amendment reported to act as a source of mineral elements. To determine its effect on plant growth, Dendranthema `Connie' rooted cuttings, Malus seedlings, and Citrus seedlings were grown in containers in one of two growing media: ProMix BX or ProMix BX with Azomite (1:1, v:v). Plant height was monitored weekly and after 6 weeks of growth, fresh and dry plant weights of roots and shoots were determined. There was no difference in any of the parameters measured as a result of the addition of Azomite. Any nutritional influence of the Azomite may only be evident in different conditions, e.g., field soil, or over an extended period of time. The Azomite altered the medium's physical properties and therefore bulk density and water-holding capacity of the Azomite were determined for consideration.


1997 ◽  
Vol 77 (4) ◽  
pp. 693-702 ◽  
Author(s):  
A. Fierro ◽  
J. Norrie ◽  
A. Gosselin ◽  
C. J. Beauchamp

In a greenhouse study, deinking sludge was evaluated as a soil amendment supplemented with four nitrogen (N) fertilization levels for the growth of the grasses Agropyron elongatum (Host.) Beauv. (tall wheatgrass), Alopecurus pratensis L. (meadow foxtail), Festuca ovina var. duriuscula (L). Koch (hard fescue), and four levels of phosphorus (P) for the growth of the legumes Galega orientalis Lam. (galega), Medicago lupulina L. (black medic), Melilotus officinalis (L.) Lam (yellow sweet clover). Fertilizers were applied on the basis of sludge level to maintain uniform carbon (C)/N or C/P ratios across sludge treatments. In one experiment, sand was mixed with 0, 10, 20 or 30% sludge while, in a second experiment, mineral soil was mixed with 0, 27, 53 or 80% sludge (vol/vol). In sand mixtures of 30 and 20% sludge, grasses had similar or greater growth than in unamended mineral soil when N was added at about 6.5 and 8.4 g kg−1 deinking sludge, respectively. For all legumes but Medicago lupulina, P at about 0.8 g kg−1 sludge was required for these sand mixtures. In soil mixtures of 53 and 27% sludge, grasses grew well when supplemental N was about 5.3 and 6.9 g kg−1 sludge, respectively. Legumes required P at 0.5 and 1.2 g kg−1 sludge, respectively. In general, growth was closely related to total amount of added N or P in spite of the wide range of C/N or C/P ratios. When growing in media amended with sludge, grasses needed higher tissue N concentration for an equivalent growth than in control soil; legumes had similar tissue P concentration. The grasses Agropyron elongatum and Alopecurus pratensis as well as the legumes Melilotus officinalis and Galega orientalis are promising species for field testing, based on dry matter production. Deinking sludge can be used as soil amendment when adequate N and P supplements are provided. Key words: Soil amendment, papermill sludge, Agropyron elongatum, Alopecurus pratensis, Festuca ovina, Medicago lupulina, Galega orientalis, Melilotus officinalis


Polymers ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 605 ◽  
Author(s):  
Jungmin Lee ◽  
Soohee Park ◽  
Hyun-gyoo Roh ◽  
Seungtaek Oh ◽  
Sunghoon Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document