Growth of Container-grown Plants With and Without Azomite Soil Amendment

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 492c-492
Author(s):  
Chris Ely ◽  
Mark A. Hubbard

Azomite is a mined, commercially available, hydrated sodium calcium aluminosiliclate soil amendment reported to act as a source of mineral elements. To determine its effect on plant growth, Dendranthema `Connie' rooted cuttings, Malus seedlings, and Citrus seedlings were grown in containers in one of two growing media: ProMix BX or ProMix BX with Azomite (1:1, v:v). Plant height was monitored weekly and after 6 weeks of growth, fresh and dry plant weights of roots and shoots were determined. There was no difference in any of the parameters measured as a result of the addition of Azomite. Any nutritional influence of the Azomite may only be evident in different conditions, e.g., field soil, or over an extended period of time. The Azomite altered the medium's physical properties and therefore bulk density and water-holding capacity of the Azomite were determined for consideration.

Khazanah ◽  
2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Warit Abi Nurazaq ◽  
◽  
Bambang Purwantana ◽  
Radi Radi ◽  
Andri Prima Nugroho ◽  
...  

Tropical country has a large biomass provide from agricultural residue. The biomass has potential to be processed as biochar. In general, biochar can be utilized as soil amendment in order to increase the ability of soil to retain nutrients, reduce surface runoff, due to excess water, and adding biodiversity of soils that are very useful for plant growth. The biochar characteristics are strongly related to the feedstock types and also their pyrolysis method. This research aims to study the physical characteristics of tropical biochar and their potential suitability in soil improvement. The biochar was produced by slow pyrolysis method using a vertical bed kiln. The feedstock were 9 types of agricultural residue including: mango leaf, longan leaf, teak leaf, mango branch, longan branch, rubber branch, corncob, rice straw, and rice husk. Temperature of the pyrolisis process was in the range of 400 °C to 600 °C. The results indicated that the physical properties of feedstock affects the characteristics of biochar. The higher bulk density and fixed carbon value the greater yield of biochar. Compare to their raw materials, the average water content of biochar was reduced (0.2–3.85 %), while pH increased (7.06–9.9). The electrical conductivity in general also increased (0.11–2.9 ds.m-1 ). Bulk density changed, corncob, and branches materials decreased, while rice straw, rice husk and leaves materials increased. The water holding capacity was a fairly low number (4–20 %). Application of the utilized biochar as a soil amendment is to improve soil chemical properties (pH, electrical conductivity, and availability of N-P contents) and physical properties (bulk density, porosity, and water holding capacity). Application for different soil types requires different biochar characteristics, it is influenced by the type of raw material used, temperature, and combustion time.


2011 ◽  
Vol 21 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Michael R. Evans

Aggregates produced from finely ground waste glass [Growstones (GS); Earthstone Corp., Santa Fe, NM] have been proposed to adjust the physical properties of peat-based substrates. The GS had a total pore space (TPS) of 87.4% (by volume), which was higher than that of sphagnum peat and perlite but was similar to that of parboiled fresh rice hulls (PBH). The GS had an air-filled pore space (AFP) of 53.1%, which was higher than that of sphagnum peat and perlite but lower than that of PBH. At 34.3%, GS had a lower water-holding capacity (WHC) than sphagnum peat but a higher WHC than either perlite or PBH. The bulk density of GS was 0.19 g·cm−3 and was not different from that of the perlite but was higher than that of sphagnum peat and PBH. The addition of at least 15% GS to sphagnum peat increased the AFP of the resulting peat-based substrate. Substrates containing 25% or 30% GS had a higher AFP than substrates containing equivalent amounts of perlite but a lower AFP than substrates containing equivalent PBH. Substrates containing 20% or more GS had a higher WHC than equivalent perlite- or PBH-containing substrates. Growth of ‘Cooler Grape’ vinca (Catharanthus roseus), ‘Dazzler Lilac Splash’ impatiens (Impatiens walleriana), and ‘Score Red’ geranium (Pelargonium ×hortorum) was similar for plants grown in GS-containing substrates and those grown in equivalent perlite- and PBH-containing substrates.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 979B-979
Author(s):  
Johann S. Buck ◽  
Michael R. Evans ◽  
Paolo Sambo

Horticultural root substrates are designed to provide the optimal physical properties for plant growth. These properties include bulk density (g·cm-3), air-filled pore space (% v/v), total pore space (% v/v), water-filled pore space (% v/v), water-holding capacity (% v/v and w/w), and wettability. Whole, fresh parboiled rice hulls were ground to produce four grades with varying particle size distributions. Particle sizes for the four grades ranged from <0.25 to >2.80 mm. Additionally, discrete particle sizes of <0.25, 0.50, 1.00, 2.00, 2.80, and >2.80 mm were produced. For all grade distributions and particle point sizes, physical properties were determined and contrasted against Canadian sphagnum peat. As the proportion of smaller particle sizes in the distributions increased or as the particle point sizes decreased, total pore space (% v/v) and air-filled pore space (% v/v) decreased, while, bulk density (g·cm-3) and water-holding capacity (% v/v and w/w) increased. Additionally, as the proportion of particle sizes from <0.25–0.50 mm increased, the wettabilty of the whole fresh parboiled rice hull material decreased. Particle sizes ranging from 1.00–2.80 mm possessed the physical properties most suitable for plant growth in containerized greenhouse crop production and were most similar to peat.


Soil Research ◽  
1998 ◽  
Vol 36 (6) ◽  
pp. 899 ◽  
Author(s):  
D. P. C. Stewart ◽  
K. C. Cameron ◽  
I. S. Cornforth ◽  
J. R. Sedcole

A 2-year field trial determined the influence of applying spent mushroom substrate (SMS) on soil physical properties and the growth of 4 consecutive vegetable crops (sweetcorn, cabbage, potato, cabbage). Treatments comprised 0, 20, 40, and 80 t/ha of moist SMS, both with and without inorganic fertiliser, applied to each crop, giving a range of SMS rates up to 320 t/ha. SMS improved the environment for plant root growth by decreasing soil bulk density (by 0· 05-0·25 g/cm 3 at 100 mm depth), increasing aggregate stability (by 13-16%), reducing clod and surface crust formation (by 16-31 and 18-94%, respectively), increasing the infiltration rate (by 130-207 mm/h), increasing the water content of the soil (by 0-7% w/w), and reducing diurnal temperature changes. Some of these changes were not evident until repeated applications of 80 t/ha SMS had been made. Soil physical properties were related to crop yield, and soil physical properties’ principal components were related to crop principal components using regression analysis (r2 of 0·20-0·60 and 0·16-0·54, respectively). The soil physical properties that had the most influence on plant growth were specific to each crop and included bulk density, water content, surface crust cover, infiltration rate, and aggregate size distribution. Soil physical properties had a large influence on the potato yield irrespective of fertiliser use and on both cabbage crop yields when fertiliser was not used, but not on the sweetcorn yield (the first crop to be grown). The effect of changing soil physical properties on plant growth was most apparent when fertiliser was not used. This was because the improved physical properties increased plant yield (at least in part) because of increased plant nutrient uptake.


HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 912A-912
Author(s):  
Dharmalingam S. Pitchay ◽  
B.C. Bearce

Rooted cuttings of `Supjibi' poinsettia were potted in peat vermiculite, mixed with coal bottom ash at 0%, 25%, 50%, 75%, or 100% by volume. Values of pH were higher in media containing coal bottom ash. In general, pH increased for the first 4 weeks, during which time 50–100 ppm (N) fertilizer was being applied, decreased temporarily when 200 ppm fertilizer began, and then increased and stabilized for the last 5 weeks. At first, pH tended to be higher with increase in ash, but when 200 ppm fertilizer was begun, pH became the same in all coal ash levels. Once fertilization was stopped, pH tended again to be higher in ash media. Levels of EC remained low in all media when 50–100 ppm of fertilizer was applied, but increased after 200 ppm fertilizer was begun, increasing to excessive levels 2 weeks later. With more watering, EC declined in the 0% ash, but remained high in 50% to 100% ash media. Leaf Ca content increased with increase in media ash but was below the normal range in all plants. With increase in media ash, water capacity decreased, but bulk density increased. Bract color development in plants in ash media appeared delayed.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 686b-686 ◽  
Author(s):  
Thomas M. Contrisciano ◽  
E. Jay Holcomb

The objective of this research was to develop a mineral wool based growing medium for the horticultural industry. Two types of hydrophilic mineral wool, clean wool (CW) and unclean wool (UC) were used unamended, as well as both types in combinations with 25, 50, and 75 percent peat moss (PM). A control of 100 percent (PM) was also used. Unamended CW had a low bulk density, excellent water holding capacity, good aeration, but high pH. Once PM was added to CW, bulk density still remained low, water holding capacity and aeration remained good, and the pH dropped to a more suitable level. Unamended UW had a high bulk density, good water holding capacity, poor aeration, and high pH. Once PM was added to UW, bulk density decreased, water holding capacity remained good, aeration increased, and pH decreased to a more optimal level. Impatiens `Violet' and Begonia `Whiskey' were grown in the nine treatments for six and nine weeks respectively. At harvest, plant growth was evaluated by height, diameter, fresh weight, dry weight, and tissue analysis. Plant growth response showed plants grown in unamended CW, UW, and PM were smaller in size and lighter in fresh and dry weights than those in 50 percent wool/50 percent PM. The plants grown in 25 and 75 percent PM were similar to the 50 percent wool/50 percent PM in size and weight.


2021 ◽  
Vol 11 (2) ◽  
pp. 176
Author(s):  
M O Kanu ◽  
Gabriel Wirdzelii Joseph ◽  
Israel George

The ability of the soil to regulate heat energy is important for plant growth, soil texture and strength. Many agricultural soils are acidic in nature which tends to limit plant growth and microbial activity. Aside from agricultural lime, wood ash is used to amend physical and physicochemical properties of the soil. To maintain the soil hydraulic and physicochemical properties and to increase plant yield, it is important to know the physicochemical and physical properties of the ash used. The physiochemical and physical properties vary across various plant species. Ash samples from seven different plants were used for this study. The Horiba metre was used to measure the electrical conductivity, pH, Total Dissolved Solid (TDS) and salinity of the samples, while the Lees Disc apparatus was used to measure the thermal conductivity of the samples. The study revealed that moringa olieferra ash has the highest salinity, TDS and Electrical conductivity, while azadichta indica and tiobroma cacoa have least pH. Also, Kyah seleelygalisis and azadichta indica had the highest and lowest thermal conductivity respectively.


Author(s):  
Ashay D. Souza ◽  
P. L. Patil

An investigation was carried out to determine the morpho-physical status of soils of Kanamadi South sub- watershed in Karnataka state of India. A detailed soil survey of Kanamadi South sub watershed was carried out using IRS P6 LISS-IV image and a total of ten pedon location  which were well distributed in Kanamadi South sub-watershed was selected. The soils were shallow to deep. Colour of pedons varied from 10 YR 2/1 (black) to 10 YR 4/3 (brown). Soil texture varied from clay to clay loam, having loose to moderately subangular to angular blocky in structure with few fine roots distributed in surface horizons. Generally, the clay content increased with depth. Consistency of soil pedons ranged from slightly hard to hard when dry, friable to firm when moist, slightly sticky to very sticky and slightly plastic to very plastic when wet. The maximum water holding capacity of soil horizons ranged from 59.65 to 79.15 per cent and generally increased down the depth. The bulk density of pedons varied from 1.17 to 1.37 Mg m-3. In general, bulk density varied with depth with lowest bulk density at surface and highest recorded in sub surface depths. The field capacity varied from 28.21% to 41.32 %.The morphological and physical properties study in area helps for resource inventorization for successful watershed planning for soil and water conservation to enhance the potential of fertility of soils and major fertility enhancement to increase the soil productivity.


Author(s):  
Vishaw Vikas ◽  
Jag Paul Sharma ◽  
A. K. Mondal ◽  
Vikas Sharma ◽  
Abhijit Samanta ◽  
...  

A study was conducted at Organic Farming Research Centre of SKUAST -Jammu during 2016 to 2017 to find out the impact of organic manures on soil organic carbon, physical and crop growth parameters Okra-Dhaincha-Broccoli cropping sequence. The Soil Organic Carbon was analyzed by Chromic acid wet digestion method. However, in soil physical properties Bulk density was analyzed by Core method, water holding capacity by Keen Rackzowski Method and Infiltration rate by Double Ring Method. In the experiment, soil organic carbon was found non-significant in experiment. Bulk density was found to be significant in year 2016 and 2017 as very captivating change was observed as compared to control; T8 as the lowest value treatment with value 1.26 g cm-3 was recorded. Water holding capacity was found to be significant in year 2016 and 2017 as very positive change was observed as compared to control as WHC with highest value 43.68% was noted in T8 in 2017. Infiltration rate was also found to be significant in year 2016-17 as very positive change was observed as compared to control. Significant improvement in root volume, root length was observed in Okra and same was noted in size of curd in broccoli as compared to control. The significant impact of organic manures on soil quality parameters will provide a new way to improve the soil health and productivity in a sustainable way.


Sign in / Sign up

Export Citation Format

Share Document