Measuring the impact of dynamic life cycle performance feedback on conceptual building design

2017 ◽  
Vol 164 ◽  
pp. 726-735 ◽  
Author(s):  
John P. Basbagill ◽  
Forest Flager ◽  
Michael Lepech
2018 ◽  
Vol 10 (10) ◽  
pp. 3753 ◽  
Author(s):  
Sakdirat Kaewunruen ◽  
Victor Martin

Significant increase in the demand for freight and passenger transports by trains pushes the railway authorities and train companies to increase the speed, the axle load and the number of train carriages/wagons. All of these actions increase ground-borne noise and vibrations that negatively affect people who work, stay, or reside nearby the railway lines. In order to mitigate these phenomena, many techniques have been developed and studied but there is a serious lack of life-cycle information regarding such the methods in order to make a well-informed and sustainable decision. The aim of this study is to evaluate the life-cycle performance of mitigation methods that can enhance sustainability and efficacy in the railway industry. The emphasis of this study is placed on new methods for ground-borne noise and vibration mitigation including metamaterials, geosynthetics, and ground improvement. To benchmark all of these methods, identical baseline assumptions and the life-cycle analysis over 50 years have been adopted where relevant. This study also evaluates and highlights the impact of extreme climate conditions on the life-cycle cost of each method. It is found that the anti-resonator method is the most expensive methods compared with the others whilst the use of geogrids (for subgrade stiffening) is relatively reliable when used in combination with ground improvements. The adverse climate has also played a significant role in all of the methods. However, it was found that sustainable methods, which are less sensitive to extreme climate, are associated with the applications of geosynthetic materials such as geogrids, composites, etc.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5833
Author(s):  
Markéta Šerešová ◽  
Jiří Štefanica ◽  
Monika Vitvarová ◽  
Kristina Zakuciová ◽  
Petr Wolf ◽  
...  

As both the human population and living standards grow, so does the worldwide electricity demand. However, the power sector is also one of the biggest environmental polluters. Therefore, options are currently being sought aimed at reducing environmental impacts, one of the potential tools for which concerns the use of life cycle assessment. This study, therefore, focuses on the most commonly used nonrenewable (black coal, lignite, natural gas and nuclear) and renewable sources (wind, hydro and photovoltaic) in the Czech Republic in terms of their construction, operation, and decommissioning periods. Environmental impacts are assessed via the use of selected impact categories by way of product environmental footprint methodology. The results highlight the potential environmental impacts associated with electricity generation for each of the primary energy sources. Black coal and lignite power plants were found to contribute most to the global warming, resource use, energy carriers and respiratory inorganics categories. On the other hand, the impact on water depletion and resource use, mineral and metals categories were found to be most significantly affected by the production of electricity from photovoltaic power plants. Finally, it is proposed that the results be employed to design scenarios for the future energy mix.


2013 ◽  
Vol 330 ◽  
pp. 911-915 ◽  
Author(s):  
Vladimír Geletka ◽  
Anna Sedláková

The quality of most buildings may be affected during the initial phase of architectural design. It is therefore to optimize input parameters, which significantly influence energy efficiency. In principle it is possible to speak of a deterministic approach, which consider the input parameters to be fixed or a stochastic approach, which takes a wider set of input parameters into account. A single-storey house is evaluated in terms of energy performance in the initial phase of building design, where input parameters are changed in order to determine a correlation coefficient. The methodology is based on a sensitivity analysis (SA) and MonteCarlo simulation based on a stochastic random selection. Regression (RA) were written to express the impact architectural design has on energy performance. Feedback from the regression model estimates annual heating demand of single storey house.


2020 ◽  
Vol 13 (1) ◽  
pp. 249
Author(s):  
Aliakbar Kamari ◽  
Ashwin Paari ◽  
Henrik Øien Torvund

Virtual Reality (VR) is receiving ever-increasing attention and is utilized by many construction companies in their current practices. This paper aims at a critical investigation of the impact of VR technology on how sustainability and cost are understood and perceived by the users in building design projects, which could lead to improving and supporting the actual building design processes. The research study focused on evaluating design alternatives using Building Information Modeling (BIM)-enabled VR technology integrated with cost and sustainability life cycle assessment (LCA) software. In doing so, the paper begins with reviewing the relevant literature in the mentioned areas. Thereafter, it adopts an experimental-qualitative-quantitative method to test the research hypothesis and analyze the effects of 360-degree VR on the users (66 participants), while distinguishing between users who have a relevant background in building/construction engineering (i.e., architect engineers and civil engineers), and those who have not (i.e., owners and clients). It is observed that despite their background, the user participants positively embrace the ideas and aspirations of sustainability, and that there is some evidence of respondents preferring the economy over sustainability. Likewise, the participants are not making an effort to measure the emissions of their design options rather than focus on the building’s economic aspects.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1613
Author(s):  
Rozália Vaňová ◽  
Rastislav Igaz ◽  
Miroslav Němec ◽  
Jaroslava Štefková ◽  
Jozef Štefko

The aim of the study is to point out the burden of passive wood-based buildings throughout the life cycle from the environmental point of view to better understand the consequences and importance of building design in Slovakia. The analysis was carried out according to the Life Cycle Assessment methodology. The results were calculated by the CML-IA baseline method. The impacts of the product stage and operational energy use were the highest throughout the considered life cycle. Substances contributing to eleven impact categories were identified. Foundations, especially foam glass, were found to bear the majority of the impact of the overall construction materials. The normalization category showed considerable impact on marine aquatic ecotoxicity mainly due to building energy consumption over the course of 50 years. Loads connected to the replacement stage were the third highest. The study also proved high demand on elements of photovoltaics.


2006 ◽  
Vol 33 (6) ◽  
pp. 650-672 ◽  
Author(s):  
Saeed Mirza

The life cycle performance of any infrastructure should be taken into consideration in its design, its construction, its maintenance, its operation, and when needed, its rehabilitation. The protection of infrastructure must be holistic, taking into account long-term socioeconomic and environmental considerations and the impact of the global climate change. Fulfilling the requirements of the ultimate and serviceability limit states over the service life of the facility requires an understanding of the use of the system, the deterioration response of the materials and their components when subjected to aggressive environments, and how this deterioration can be prevented or significantly delayed by preventive, remedial, and routine maintenance. The composition, microstructure, macrostructure, and various modes of deterioration of materials used in construction (steel, wood, concrete) are reviewed, along with possible remedial measures. The development of concrete as a construction material, its durability, and the relevant durability provisions in the various Canadian Standards Association standards are reviewed briefly. Current European practice and the 1990 Comité Euro-International du béton Design Guide for Durable Concrete Structures are evaluated. The engineer's responsibility for durable performance of a facility and the importance of durability audits are also examined.Key words: aggressive environment, construction materials, deterioration, durability, durability audits, life cycle performance, macrostructure, microstructure, socioeconomic and environmental considerations, sustainability.


2021 ◽  
pp. 147807712199980
Author(s):  
Yair Schwartz ◽  
Rokia Raslan ◽  
Ivan Korolija ◽  
Dejan Mumovic

Building performance evaluation is generally carried out through a non-automated process, where computational models are iteratively built and simulated, and their energy demand is calculated. This study presents a computational tool that automates the generation of optimal building designs in respect of their Life Cycle Carbon Footprint (LCCF) and Life Cycle Costs (LCC). This is achieved by an integration of three computational concepts: (a) A designated space-allocation generative-design application, (b) Using building geometry as a parameter in NSGA-II optimization and (c) Life Cycle performance (embodied carbon and operational carbon, through the use of thermal simulations for LCCF and LCC calculation). Examining the generation of a two-storey terrace house building, located in London, UK, the study shows that a set of building parameters combinations that resulted with a pareto front of near-optimal buildings, in terms of LCCF and LCC, could be identified by using the tool. The study shows that 80% of the optimal building’s LCCF are related to the building operational stage (σ = 2), while 77% of the building’s LCC is related to the initial capital investment (σ = 2). Analysis further suggests that space heating is the largest contributor to the building’s emissions, while it has a relatively low impact on costs. Examining the optimal building in terms compliance requirements (the building with the best operational performance), the study demonstrated how this building performs poorly in terms of Life Cycle performance. The paper further presents an analysis of various life-cycle aspects, for example, a year-by-year performance breakdown, and an investigation into operational and embodied carbon emissions.


2003 ◽  
Author(s):  
Shayne Brannman ◽  
Eric W. Christensen ◽  
Ronald H. Nickel ◽  
Cori Rattelman ◽  
Richard D. Miller

Sign in / Sign up

Export Citation Format

Share Document