Predicting Annual Heating Demand under Sensitivity Analysis

2013 ◽  
Vol 330 ◽  
pp. 911-915 ◽  
Author(s):  
Vladimír Geletka ◽  
Anna Sedláková

The quality of most buildings may be affected during the initial phase of architectural design. It is therefore to optimize input parameters, which significantly influence energy efficiency. In principle it is possible to speak of a deterministic approach, which consider the input parameters to be fixed or a stochastic approach, which takes a wider set of input parameters into account. A single-storey house is evaluated in terms of energy performance in the initial phase of building design, where input parameters are changed in order to determine a correlation coefficient. The methodology is based on a sensitivity analysis (SA) and MonteCarlo simulation based on a stochastic random selection. Regression (RA) were written to express the impact architectural design has on energy performance. Feedback from the regression model estimates annual heating demand of single storey house.

2018 ◽  
Vol 7 (4) ◽  
pp. 2068 ◽  
Author(s):  
Abdelhadi Serbouti ◽  
Mourad Rattal ◽  
Abdellah Boulal ◽  
Mohammed Harmouchi ◽  
Azeddine Mouhsen

The worldwide demographic and economic growth increases the global need for energy and directly contributes to climate change. In Morocco, the residential real estate is the third largest consumer of energy after transport and industry sectors. Thus, the aim of this study is to help engineers improve the energy performance of residential buildings by coupling the TRNSYS software both with a sensitivity analysis method and with an optimization tool. In fact, sensitivity analysis allows reducing the number of input parameters of any studied model, by ranking their degree of impact on any chosen output, and then discard the parameters with the least influence on that output. To do so, we developed algorithms in Python programming language to combine the open source library SALib, available in Github platform, with the TRNSYS software. Then, the chosen input parameters can be optimized through coupling the generic optimization program Genopt with TRNSYS. This article will also explain how these tools were applied to reduce the heating & air-conditioning needs of a high-energy consumption building in Morocco, while studying the variation of nineteen input parameters in TRNSYS. The main aim is to meet the energy performance requirement of the Moroccan thermal regulation for buildings.  


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2593 ◽  
Author(s):  
Reza Khakian ◽  
Mehrdad Karimimoshaver ◽  
Farshid Aram ◽  
Soghra Zoroufchi Benis ◽  
Amir Mosavi ◽  
...  

The energy performance of buildings and energy-saving measures have been widely investigated in recent years. However, little attention has been paid to buildings located in rural areas. The aim of this study is to assess the energy performance of two-story residential buildings located in the mountainous village of Palangan in Iran and to evaluate the impact of multiple parameters, namely building orientation, window-to-wall ratio (WWR), glazing type, shading devices, and insulation, on its energy performance. To attain a nearly zero energy building design in rural areas, the building is equipped with photovoltaic modules. The proposed building design is then economically evaluated to ensure its viability. The findings indicate that an energy saving of 29% can be achieved compared to conventional buildings, and over 22 MWh of electricity can be produced on an annual basis. The payback period is assessed at 21.7 years. However, energy subsidies are projected to be eliminated in the near future, which in turn may reduce the payback period.


2019 ◽  
Vol 887 ◽  
pp. 428-434
Author(s):  
Dorcas A. Ayeni ◽  
Olaniyi O. Aluko ◽  
Morisade O. Adegbie

Man requires a thermal environment that is within the range of his adaptive capacity and if this fluctuates outside the normal, a reaction is required beyond its adaptive capacity which results to health challenges. Therefore, the aim of building design in the tropical region is to minimize the heat gain indoors and enhance evaporative cooling of the occupants of the space so as to achieve thermal comfort. In most cases, the passive technologies are not adequate in moderating indoor climate for human comfort thereby relying on active energy technique to provide the needed comfort for the building users. The need for the use of vegetation as a panacea for achieving comfortable indoor thermal conditions in housing is recognised by architects globally. However, the practice by architects in Nigeria is still at the lower ebb. The thrust of this paper therefore is to examine the impact of vegetation in solar control reducing thermal discomfort in housing thereby enhancing the energy performance of the buildings. Using secondary data, the paper identifies the benefits of vegetation in and around buildings to include improvement of indoor air quality through the aesthetics quality of the environment and concludes that vegetation in and around building will in no small measure contributes to saving energy consumption.


2018 ◽  
Vol 22 (6 Part A) ◽  
pp. 2355-2365
Author(s):  
Veliborka Bogdanovic ◽  
Dusan Randjelovic ◽  
Miomir Vasov ◽  
Marko Ignjatovic ◽  
Jelena Stevanovic

This paper analyzes the impact of Trombe wall construction on heating and cooling demands of building with form (rectangular single-store building of about one hundred square meters area) which is common for individual residential buildings in the Republic of Serbia. Trombe wall, as a representative of a passive solar design, was installed on the south wall of the building. Model of the building was made in the Google SketchUp software, while the results of energy performance were obtained using EnergyPlus and jEplus. Parameters of thermal comfort and climatic data for the area of city of Belgrade, Republic of Serbia, were taken into account. Coverage of the south fa?ade was varied, as well as the thickness of the thermal mass and orientation. Energy consumption of the object is discussed, based on obtained results of the analysis. According to comparative analysis of the above mentioned models it can be concluded that the application of the Trombe wall structure on south side may lead to savings of 33% on heating, but also the higher energy consumption for cooling. Total energy consumption on an annual basis is reduced by using this system.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ashkan Ayough ◽  
Farbod Farhadi ◽  
Mostafa Zandieh

Purpose This paper aims to unfold the role that job rotation plays in a lean cell. Unlike many studies, the authors consider heterogeneous operators with dynamic performance factor that is impacted by the assignment and scheduling decisions. The purpose is to derive an understanding of the underlying effects of job rotations on performance metrics in a lean cell. The authors use an optimization framework and an experimental design methodology for sensitivity analysis of the input parameters. Design/methodology/approach The approach is an integration of three stages. The authors propose a set-based optimization model that considers human behavior parameters. They also solve the problem with two meta-heuristic algorithms and an efficient local search algorithm. Further, the authors run a post-optimality analysis by conducting a design of experiments using the response surface methodology (RSM). Findings The results of the optimization model reveal that the job rotation schedules and the human cognitive metrics influence the performance of the lean cell. The results of the sensitivity analysis further show that the objective function and the job rotation frequencies are highly sensitive to the other input parameters. Based on the findings from the RSM, the authors derive general rules for the job rotations in a lean cell given the ranges in other input variables. Originality/value The authors integrate the job rotation scheduling model with human behavioral and cognitive parameters and formulate the problem in a lean cell for the first time in the literature. In addition, they use the RSM for the first time in this context and offer a post-optimality analysis that reveals important information about the impact of the job rotations on the performance of operators and the entire working cell.


2018 ◽  
Vol 10 (10) ◽  
pp. 3655 ◽  
Author(s):  
Claudio Favi ◽  
Elisa Di Giuseppe ◽  
Marco D’Orazio ◽  
Marta Rossi ◽  
Michele Germani

Green building design and architecture have become widespread tenets in the development of sustainable buildings. In this context, the use of sustainable materials and the awareness of resource/energy consumption are strategic aspects to consider for the improvement of building performances. This paper presents a new and structured approach to address uncertainty and sensitivity analysis in Life Cycle Assessment (LCA) to support the decision-making process in building renovation. This “probabilistic” approach to LCA allows for the obtaining of results expressed as ranges of environmental impacts and for alternative solutions, offering an idea of the meaning of input parameters’ uncertainties and their influence on the result. The approach includes (i) the assessment of inputs’ uncertainties (represented by Probability Density Functions—PDF); (ii) the data sampling; and (iii) the uncertainty propagation (Monte Carlo method). Variance decomposition techniques have been used to sample inputs’ PDFs and assess their impact on the LCA result distribution (sensitivity analysis). The methodology application is illustrated through a case study where three building retrofit measures were assessed. Results provide an insight about the uncertainties of LCA indicators in terms of climate change and nonrenewable energy. The input parameters related to the use phase are confirmed as the most influential in building LCA.


Sign in / Sign up

Export Citation Format

Share Document