Carbon free electricity production from the alternative energy concepts based on the utilization of the convective vortex systems as a heat engines: Review of the current status and perspective

2018 ◽  
Vol 170 ◽  
pp. 85-95 ◽  
Author(s):  
Sandro Nižetić
Author(s):  
S. Nizetic

This paper presents a new analytical approach for estimating the pressure drop potential in proposed technical concepts in which convective vortices are to be used as heat engines. The main novelty is analytical connection of the well-known CAPE value with the magnitude of the pressure potential. The proposed analytical approach is important and useful for research in energy concepts where convective vortices are to be used as sources of mechanical work for electricity production. Furthermore, it is the first approach developed by which the pressure drop potential can be calculated for concepts utilising convective vortex heat engines, and it is an important step forward for the theoretical research of alternative energy concepts with convective vortices.


2021 ◽  
Vol 11 (4) ◽  
pp. 1616
Author(s):  
Antonina Rita Limongi ◽  
Emanuele Viviano ◽  
Maria De Luca ◽  
Rosa Paola Radice ◽  
Giuliana Bianco ◽  
...  

The need to safeguard our planet by reducing carbon dioxide emissions has led to a significant development of research in the field of alternative energy sources. Hydrogen has proved to be the most promising molecule, as a fuel, due to its low environmental impact. Even if various methods already exist for producing hydrogen, most of them are not sustainable. Thus, research focuses on the biological sector, studying microalgae, and other microorganisms’ ability to produce this precious molecule in a natural way. In this review, we provide a description of the biochemical and molecular processes for the production of biohydrogen and give a general overview of one of the most interesting technologies in which hydrogen finds application for electricity production: fuel cells.


2011 ◽  
Vol 133 (01) ◽  
pp. 24-29 ◽  
Author(s):  
John Reilly ◽  
Allison Crimmins

This article predicts future global energy demand under a business-as-usual scenario. According to the MIT projections, conventional technology supported by fossil fuels will continue to dominate under a business-as-usual scenario. In fact, in the absence of climate policies that would impact energy prices, fossil fuels will supply nearly 80% of global primary energy demand in 2100. Alternative energy technologies will expand rapidly. Non-fossil fuel use will grow from 13% to 20% by 2100, with renewable electricity production expanding nearly tenfold and nuclear energy increasing by a factor of 8.5. However, those sources currently provide such a small share of the world's energy that even rapid growth is not enough to significantly displace fossil fuels. In spite of the growth in renewables, the projections indicate that coal will remain among the least expensive fuel sources. Non-fossil fuel alternatives, such as renewable energy and nuclear energy, will be between 40% and 80% more expensive than coal.


2006 ◽  
Vol 17 (4) ◽  
pp. 19-24
Author(s):  
M T E Kahn ◽  
W Fritz

The World Summit on Sustainable Development (WSSD) was attended by approximately 21 000 international delegates in Johannesburg, South Africa in 2002. The aim was to institute ecologically sound environmental management. Research has shown that fossil fuel or coal fired power plants are the major cause of air pollution in electricity generation. This paper seeks to show technologies that can contribute to reducing the environmental impacts of electricity production, via emission control systems, industry energy policy, renewable energy technologies etc. and the promotion of active research and development in alternative energy applications in Africa. Innovative energy technology research and development and applications such as smaller scale distributed generation and solid state lighting (SSL) are seen as capable of adding a positive contribution in this area.


Author(s):  
Nataliia Nykytchenko ◽  
Katerina Gordienko

The article analyzes the procedure of buying the electricity according to the feed-in-tariff (FIT) and the model («Typovyi») Power Purchase Agreement, in connection with the introduction of a new electricity market and the order of Renewable producers` business. Specific features of the model Power Purchase Agreement conclusion between Renewable producers and the Guaranteed Buyer are defined. It also analyzed the differences between the model Power Purchase Agreement and the oriental agreement as well as researched a mechanism of investors protection who would invest in the Renewable projects. The authors of the article have made a comparative analysis of the different Power Purchase Agreement`s editions, in particular: actual model agreement form and oriental agreement according to which the Renewable producers are no longer work but the provisions contained therein make it possible to analyze the process and the reasons for adoption of the new one form. Effectiveness of a new electricity market introduction from July 1, 2019 depends on the regulation of the activities for all the market participants. Special operating conditions have been provided for the Renewable electricity producers. In particular, with the introduction of a new market, Renewable electricity producers began to sell electricity to the Guaranteed Buyer, the successor of the SE «Energorynok». However, in order to implement the new procedure of work for the Renewable producers, the Regulator needed to approve certain regulatory acts. With this purpose, in September 2018, the National Commission for State Regulation in the Fields of Energy and Utilities published a draft resolution «On approval of regulatory acts regulating the activity of a guaranteed buyer and purchase of electricity at feed-in-tariff», which contained the form a new model contract for the sale of electricity at feed-in-tariff between a Guaranteed buyer and an entity that produces electricity using alternative energy sources as well as the order of purchase and sale of electricity at FIT. As rightly expected, the approval of these regulations is an important element not only for functioning of the new electricity market, but also for the continued growth of electricity production from renewable energy sources and attracting international investments.


2020 ◽  
pp. 232-232
Author(s):  
Vojislav Mitic ◽  
Goran Lazovic ◽  
Dragan Djordjevic ◽  
Maja Stankovic ◽  
Vesna Paunovic ◽  
...  

The Global Energy Crisis necessitated improving research into new, renewable and alternative energy sources. Due to that, our focus is on the area of some phenomena and applications where different synthetic methods and microstructure property optimization achieved significant improvement in the electro physical properties of output materials and components. This is especially important for higher energy efficiency and electricity production (batteries and battery systems, fuel cells, and hydrogen energy).The improvement of energy storage tank capacity is one of the most important development issues in the energy sphere too. It?s because of this very promising research and application area that we are expanding the knowledge on these phenomena through fractal nature analysis. So, the results obtained in the field of electrochemical energy sources, especially in electrolyte development, are taken into account the analysis of fractal nature optimization. Based on the research field of fractal material science, particularly electronic materials, we conducted research in microstructure fractal influence in the area of electrochemistry. We investigated the consolidation parameters of Fe2O3 redox processes. The influence of activation energy, fundamental thermodynamic parameters, and also the fractal correction of electrode surface area through complex fractal dimension with recognized grains and pores, and the Brownian motion of particles is introduced. Finally, the electrochemical Butler-Volmer equation fractalization is obtained. These results practically open new frontiers in electrochemical energy processes performed through the Arrhenius equation within electrolyte bulk and electrode relations and more complete and precise energy generation.


In the last decades, the microbial fuel cell (MFC) has increased great opportunity as an alternative energy source through electrochemical process for producing bio-energy. MFC has been involved in anode and cathode for electric energy generation from organic ingredients such as bacteria in waste water treatment. In this review, we discussed the different types of MFC (anode and cathode) materials with various integrations. In addition, it includes the gainful, biocompatible and exceedingly constant electrode materials with enhanced microbial fuel cell performance. Following this review, expansion in membrane materials such as hydrocarbon polymer, perfluorinated polymer, organic-organic hybrid polymer, ceramics, organic-inorganic hybrid composite, and biopolymer membranes are clarified in detail. In this paper, also highlighted the application of MFC technology and the methods used in the MFC in electricity production.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 312
Author(s):  
Abdulaziz Alhammad ◽  
Qian (Chayn) Sun ◽  
Yaguang Tao

Many countries have set a goal for a carbon neutral future, and the adoption of solar energy as an alternative energy source to fossil fuel is one of the major measures planned. Yet not all locations are equally suitable for solar energy generation. This is due to uneven solar radiation distribution as well as various environmental factors. A number of studies in the literature have used multicriteria decision analysis (MCDA) to determine the most suitable places to build solar power plants. To the best of our knowledge, no study has addressed the subject of optimal solar plant site identification for the Al-Qassim region, although developing renewable energy in Saudi Arabia has been put on the agenda. This paper developed a spatial MCDA framework catering to the characteristics of the Al-Qassim region. The framework adopts several tools used in Geographic Information Systems (GIS), such as Random Forest (RF) raster classification and model builder. The framework aims to ascertain the ideal sites for solar power plants in the Al-Qassim region in terms of the amount of potential photovoltaic electricity production (PVOUT) that could be produced from solar energy. For that, a combination of GIS and Analytical Hierarchy Process (AHP) techniques were employed to determine five sub-criteria weights (Slope, Global Horizontal Irradiance (GHI), proximity to roads, proximity to residential areas, proximity to powerlines) before performing spatial MCDA. The result showed that ‘the most suitable’ and ‘suitable’ areas for the establishment of solar plants are in the south and southwest of the region, representing about 17.53% of the study area. The ‘unsuitable’ areas account for about 10.17% of the total study area, which is mainly concentrated in the northern part. The rest of the region is further classified into ‘moderate’ and ‘restricted’ areas, which account for 46.42% and 25.88%, respectively. The most suitable area for potential solar energy, yields approximately 1905 Kwh/Kwp in terms of PVOUT. The proposed framework also has the potential to be applied to other regions nationally and internationally. This work contributes a reproducible GIS workflow for a low-cost but accurate adoption of a solar energy plan to achieve sustainable development goals.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 225 ◽  
Author(s):  
Pedro Branco ◽  
Francisco Gonçalves ◽  
Ana Cristina Costa

The fastest-growing renewable source of energy is solar photovoltaic (PV) energy, which is likely to become the largest electricity source in the world by 2050. In order to be a viable alternative energy source, PV systems should maximise their efficiency and operate flawlessly. However, in practice, many PV systems do not operate at their full capacity due to several types of anomalies. We propose tailored algorithms for the detection of different PV system anomalies, including suboptimal orientation, daytime and sunrise/sunset shading, brief and sustained daytime zero-production, and low maximum production. Furthermore, we establish simple metrics to assess the severity of suboptimal orientation and daytime shading. The proposed detection algorithms were applied to a set of time-series of electricity production in Portugal, which are based on two periods with distinct weather conditions. Under favourable weather conditions, the algorithms successfully detected most of the time-series labelled with either daytime or sunrise/sunset shading, and with either sustained or brief daytime zero-production. There was a relatively low percentage of false positives, such that most of the anomaly detections were correct. As expected, the algorithms tend to be more robust under favourable rather than under adverse weather conditions. The proposed algorithms may prove to be useful not only to research specialists, but also to energy utilities and owners of small- and medium-sized PV systems, who may thereby effortlessly monitor their operation and performance.


Sign in / Sign up

Export Citation Format

Share Document