Effects of the climatic conditions and the shape on the drying kinetics, Application to solar drying of potato-case of Maghreb's region

2018 ◽  
Vol 183 ◽  
pp. 1241-1251 ◽  
Author(s):  
Mohamed Yacine Nasri ◽  
Azeddine Belhamri
2020 ◽  
Vol 151 ◽  
pp. 908-918 ◽  
Author(s):  
Rachida Ouaabou ◽  
Bouchra Nabil ◽  
Mourad Ouhammou ◽  
Ali Idlimam ◽  
Abdelkader Lamharrar ◽  
...  

2015 ◽  
Vol 11 (5) ◽  
pp. 597-607 ◽  
Author(s):  
M. Ayadi ◽  
I. Zouari ◽  
A. Bellagi

Abstract The objective of this work, based on a theoretical and experimental study, is to investigate the energy and economic performance of a totally solar drying unit with storage for aromatic and medicinal plants, to satisfy a dimensioning already carried out on a macroscopic scale for an energy request well defined: to dry a quantity of a given agricultural products during 1 day of harvest season, so between September and May, with a heat storage which relays at night. Drying experiments were conducted for spearmint grown in Tunisia. Mathematical formulation of the physical process of this solar drying unit based on conventional heat and mass transfer equations showed a certain agreement with the experimental results under climatic conditions of Tunis (Tunisia). All the experimental drying curves showed only a falling drying rate period. The main factor in controlling the drying rate was found to be the drying air temperature. It was observed that this unit is able to dry more than 2.5 kg of spearmint per day with a moisture reduction efficiency of 70%. It was found that for all the period of harvest, so for 5 months assumed dryer used per year, the payback period is 3.6 years.


Author(s):  
A. O. Fagunwa ◽  
O. A. Aregbesola ◽  
M. O. Faborode

Mathematical modeling of drying process is a complex procedure that should be carefully done. Moreso, model for solar drying, which is a unique method of drying due to constant fluctuation in the climatic conditions, requires complete integration of the complex phenomena that are involved for accurate prediction of moisture content and drying rate. A mathematical model was developed from heat and mass balance equation considering the physical and thermal properties of the grain, meteorological factors and convective heat transfer during solar drying of grains. The data obtained from the model was compared with experimental results obtained using a solar dryer to dry five selected grains – cowpea, soyabean, groundnut, maize and sorghum at airflow rates of 0.22 m/s, 0.76 m/s and 0.94 m/s. The results from statistical analysis and regression analyses used to compare the results showed that the model is adequate in predicting the moisture content and drying rate of the selected grains as well as other agricultural products with closer physical and thermal properties.


2021 ◽  
Vol 64 (3) ◽  
pp. 1083-1094
Author(s):  
Diana M. Ramirez-Gutierrez ◽  
Klein E. Ileleji ◽  
Amanda J. Deering

HighlightsThe Page model best predicted the drying rates of mint leaves in thin-layer laboratory experiments under cyclical temperature change and in field experiments using open-air sun drying and Dehytray and Dehymeleon solar dryers.The total time for drying mint leaves with all solar drying methods was the same (48 h).For all drying methods, the aerobic bacterial count was significantly less on dried mint leaves than on fresh leaves.Color change was less impacted by sunlight with the Dehymeleon than with the Dehytray and open-air sun drying.Abstract. The drying kinetics and quality attributes of mint leaves (Mentha spitaca) were studied to determine the drying performance of two solar drying technologies (Dehymeleon V.2 and Dehytray) and their effect on dried mint quality. Field drying experiments were carried out under weather conditions at Purdue University, West Lafayette, Indiana. Thin-layer laboratory drying experiments were conducted for whole mint leaves at three temperatures [24°C (75°F), 35°C (95°F), and 54°C (130°F)] and airflow velocity of 1 m s-1 to determine the drying kinetics for the diurnal cycles typical for solar drying. The Page model was the most suitable model to predict the drying behavior of mint leaves for both the lab and field experiments. Even though the drying rate was higher with open-air sun drying on uncovered Dehytrays than with covered Dehytrays and the Dehymeleon, the total drying time for all methods was the same (48 h). Color change in mint leaves was less impacted by sunlight for mint leaves dried using the Dehymeleon, while the Dehytray and open-air sun drying had similar results due to their exposure to direct sunlight. For all drying methods, the aerobic bacterial count was significantly less for dried mint leaves than for fresh mint leaves. The log reductions in aerobic bacterial count achieved with open-air sun drying, Dehymeleon, and Dehytray were 0.47, 2.3, and 0.40, respectively. Keywords: Diffusion, Drying kinetics, Food quality, Mint leaves, Solar drying, Sun drying, Thin-layer drying.


Solar Energy ◽  
2021 ◽  
Vol 230 ◽  
pp. 721-731
Author(s):  
Decheng Kong ◽  
Yunfeng Wang ◽  
Ming Li ◽  
Xianglong Liu ◽  
Mengxiao Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document