Process development of flue gas desulphurization wastewater treatment in coal-fired power plants towards zero liquid discharge: Energetic, economic and environmental analyses

2020 ◽  
Vol 261 ◽  
pp. 121144 ◽  
Author(s):  
Xiaoqu Han ◽  
Dan Zhang ◽  
Junjie Yan ◽  
Shuran Zhao ◽  
Jiping Liu
Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5384 ◽  
Author(s):  
Mingwei Yan ◽  
Yuetao Shi

Compared with limestone-based wet flue gas desulfurization (WFGD), magnesia-based WFGD has many advantages, but it is not popular in China, due to the lack of good wastewater treatment schemes. This paper proposes the wastewater treatment scheme of selling magnesium sulfate concentrate, and makes thermal and economic analysis for different concentration systems in the scheme. Comparisons of different concentration systems for 300 MW power plant were made to determine which system is the best. The results show that the parallel-feed benchmark system is better than the forward-feed benchmark system, and the parallel-feed optimization system with the 7-process is better than other parallel-feed optimization systems. Analyses of the parallel-feed optimization system with 7-process were made in 300, 600, and 1000 MW power plants. The results show that the annual profit of concentration system for a 300, 600, and 1000 MW power plant is about 2.58 million, 5.35 million, and 7.89 million Chinese Yuan (CNY), respectively. In different concentration systems of the scheme for selling magnesium sulfate concentrate, the parallel-feed optimization system with the 7-process has the best performance. The scheme can make a good profit in 300, 600, and 1000 MW power plants, and it is very helpful for promoting magnesia-based WFGD in China.


Author(s):  
Behrang Pakzadeh ◽  
Jay Wos ◽  
Jay Renew

The United States Environmental Protection Agency (USEPA)’s announcement that it will revise the effluent limitation guidelines for steam electric power generating units could affect not only how power plants use water, but also how they discharge it. The revised guidelines may lower discharge limits for various contaminants in flue gas desulfurization (FGD) wastewater including mercury, selenium, arsenic, and nitrate/nitrite. Although the specific details of the guidelines are unknown at present, the power industry is evaluating various technologies that may address the new effluent limitation guidelines and promote water conservation. Moreover, the power industry is looking for avenues to increase water usage efficiency, reuse and recycle throughout its plant processes. Final rule approval is expected by the middle of 2014 and new regulations are expected to be implemented between 2017 and 2022 through 5-year NPDES permit cycles. discharge limits for various contaminants including arsenic, mercury, selenium, and nitrate/nitrite [1]. These pollutant limits may be below the levels achievable today with conventional treatment [2]. A growing interest exists in zero liquid discharge (ZLD) facilities and processes in power plant operations. Potentially stringent discharge limits along with water conservation and reuse efforts are two of the major drivers to achieve ZLD. Potential pollutant levels are so low that ZLD may be the best option, if not an outright requirement [1]. Thermal ZLD systems have been the subject of increased interest and discussion lately. They employ evaporating processes such as ponds, evaporators and crystallizers, or spray dryers to produce a reusable water stream and a solid residue (i.e. waste). Evaporators and crystallizers have been employed in the power industry for a number of years. However, typical A growing interest exists in zero liquid discharge (ZLD) facilities and processes in power plant operations. Potentially stringent discharge limits along with water conservation and reuse efforts are two of the major drivers to achieve ZLD. Potential pollutant levels are so low that ZLD may be the best option, if not an outright requirement. A key disadvantage of thermal ZLD is its high capital cost. One way to reduce this cost is to pre-treat the liquid stream using innovative membrane technologies and reverse osmosis (RO).


2020 ◽  
Vol 28 (3) ◽  
pp. 721-732 ◽  
Author(s):  
Lan Li ◽  
Xiaoting Huang ◽  
Quanda Jiang ◽  
Luyue Xia ◽  
Jiawei Wang ◽  
...  

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xiaoli Li ◽  
Quanbo Liu ◽  
Kang Wang ◽  
Fuqiang Wang ◽  
Guimei Cui ◽  
...  

Sulphur dioxide, as one of the most common air pollutant gases, brings considerable numbers of hazards on human health and environment. For the purpose of reducing the detrimental effect it brings, it is of urgent necessity to control emissions of flue gas in power plants, since a substantial proportion of sulphur dioxide in the atmosphere stems from flue gas generated in the whole process of electricity generation. However, the complexity and nondeterminism of the environment increase the occurrences of anomalies in practical flue gas desulphurization system. Anomalies in industrial desulphurization system would induce severe consequences and pose challenges for high-performance control with classical control strategies. In this article, based on process data sampled from 1000 MW unit flue gas desulphurization system in a coal-fired power plant, a multimodel control strategy with multilayer parallel dynamic neural network (MPDNN) is utilized to address the control problem in the context of different anomalies. In addition, simulation results indicate the applicability and effectiveness of the proposed control method by comparing with different cases.


2019 ◽  
Vol 108 ◽  
pp. 02006
Author(s):  
Piotr Marcinowski ◽  
Jan Bogacki ◽  
Maciej Majewski ◽  
Jarosław Zawadzki ◽  
Sridhar Sivakumar

Pollution released into the environment as the result of the combustion of energy fuels is a significant global threat. For instance, wastewater in coal–fired power plants is often heavily polluted by organic compounds, heavy metals and boron. Therefore, there is an urgent need for efficient flue gases and wastewater treatment. However, to be industrially implemented, the treatment processes have to be simultaneously effective and inexpensive. This research systematically studied the efficiency of inexpensive coagulation processes using aluminum-based coagulants applied to flue gas desulfurization (FGD) wastewater treatment. Additionally, the differences in the efficiency of total organic carbon (TOC) and chemical oxygen demand (COD) removal between sedimentation and coagulation processes were systematically studied. It was found that coagulation with the appropriate dose of PAX19XL coagulant achieved a satisfactory effect with significant boron removal and almost complete heavy metals removal. The polyelectrolyte use did not improve coagulation effectiveness and did not accelerate sludgesedimentation and volume decreasing. The detailed statistical analyses did not confirm the positive, pronounced effect of coagulation compared to sedimentation, although there were observed exceptions that should be considered separately. The results obtained suggest that inexpensive aluminum-based coagulants may be effective in improving the efficiency of flue gas desulfurization wastewater treatment in coal–fired power plants.


2020 ◽  
Vol 08 (11) ◽  
pp. 1-11
Author(s):  
Gang Tian ◽  
Hongyan Long ◽  
Yu Liu ◽  
Chen Zhang ◽  
Fan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document