Evaluation of alternative eutectic salt as heat transfer fluid for solar power tower coupling a supercritical CO2 Brayton cycle from the viewpoint of system-level analysis

2021 ◽  
Vol 279 ◽  
pp. 123472 ◽  
Author(s):  
Kun Wang ◽  
Ming-Jia Li ◽  
Zhen-Dong Zhang ◽  
Chun-Hua Min ◽  
Peiwen Li
Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6092
Author(s):  
Michael Krüger ◽  
Jürgen Haunstetter ◽  
Joachim Hahn ◽  
Philipp Knödler ◽  
Stefan Zunft

Solar power towers with thermal energy storage based on direct-flow regenerators have the potential to generate cost-effective base-load electricity. An inventory option that opens up further cost-saving potential but has not yet been extensively investigated for this application is slag from electric arc furnace. This use has not only economic advantages, but also serves environmental protection, since a large proportion of this type of slag is currently not used any further, but is disposed of in landfills. In the completed EU project REslag, various subsequent uses of the slag were investigated, including the possibility presented here of using sintered slag pebbles as an inventory for regenerators in solar power towers with air as the heat transfer fluid. The main results from the different phases of the project are presented, with a focus on the investigations not yet published. In addition to results from thermal simulations on different designs and on the partial load and off-design behavior of the storage lead concept “Axial flow—standing”, these are mainly results from fluid mechanical calculations on the distributor design of the storage and from material investigations on the slag. In summary, it can be stated that the sintered slag pebbles are thermally, mechanically and chemically competitive with conventional inventory materials and the principle feasibility of a slag-based storage was confirmed by the results of these investigations. The defined storage lead concept was elaborated in detail and the performance of the design was confirmed by simulations and experiments.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Ali Sulaiman Alsagri ◽  
Andrew Chiasson ◽  
Mohamed Gadalla

The aim of this study was to conduct thermodynamic and economic analyses of a concentrated solar power (CSP) plant to drive a supercritical CO2 recompression Brayton cycle. The objectives were to assess the system viability in a location of moderate-to-high-temperature solar availability to sCO2 power block during the day and to investigate the role of thermal energy storage with 4, 8, 12, and 16 h of storage to increase the solar share and the yearly energy generating capacity. A case study of system optimization and evaluation is presented in a city in Saudi Arabia (Riyadh). To achieve the highest energy production per unit cost, the heliostat geometry field design integrated with a sCO2 Brayton cycle with a molten-salt thermal energy storage (TES) dispatch system and the corresponding operating parameters are optimized. A solar power tower (SPT) is a type of CSP system that is of particular interest in this research because it can operate at relatively high temperatures. The present SPT-TES field comprises of heliostat field mirrors, a solar tower, a receiver, heat exchangers, and two molten-salt TES tanks. The main thermoeconomic indicators are the capacity factor and the levelized cost of electricity (LCOE). The research findings indicate that SPT-TES with a supercritical CO2 power cycle is economically viable with 12 h thermal storage using molten salt. The results also show that integrating 12 h-TES with an SPT has a high positive impact on the capacity factor of 60% at the optimum LCOE of $0.1078/kW h.


2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Lijun Fang ◽  
Yang Li ◽  
Xue Yang ◽  
Zeliang Yang

Abstract Concentrating solar power (CSP) technology, possessing an inherent capacity to couple with energy storage ideally, attracts a great deal of attention nowadays. However, these power plants with various types of CSP system still cannot compete with the traditional thermal power plants in terms of levelized cost of electricity (LCOE), and their potential for utilizing clear and renewable solar energy cannot be overestimated. To improve the total efficiency of the solar power tower (SPT) plant is the key factor for its development. In this present paper, a SPT plant based on an S-CO2 Brayton cycle (with S-CO2 serving as heat transfer and working fluid) is proposed. A numerical simulation is carried out to calculate the effects of key operating parameters, including power cycle and subsystem parameters, on the overall performance of the SPT plant. The results show that there is an optimum value for the compression ratio for the SPT plant. For the heat receiver, the trends of exergy and thermal efficiency varying with turbine inlet temperature are reversed, because of the significant energy loss caused by high temperature of the surface of the heat receiver. As for the overall performance, the SPT plant proposed in this paper is better than other SPT plants based on a steam Rankine system and an S-CO2 Brayton system with molten salt serving as heat transfer fluid (HTF) operating under the similar condition. Its overall thermal efficiency is 1.04% and 3.42% higher than that of two other SPT plants, respectively.


Energies ◽  
2017 ◽  
Vol 11 (1) ◽  
pp. 37 ◽  
Author(s):  
Jose Rogada ◽  
Lourdes Barcia ◽  
Juan Martinez ◽  
Mario Menendez ◽  
Francisco de Cos Juez

Power plants producing energy through solar fields use a heat transfer fluid that lends itself to be influenced and changed by different variables. In solar power plants, a heat transfer fluid (HTF) is used to transfer the thermal energy of solar radiation through parabolic collectors to a water vapor Rankine cycle. In this way, a turbine is driven that produces electricity when coupled to an electric generator. These plants have a heat transfer system that converts the solar radiation into heat through a HTF, and transfers that thermal energy to the water vapor heat exchangers. The best possible performance in the Rankine cycle, and therefore in the thermal plant, is obtained when the HTF reaches its maximum temperature when leaving the solar field (SF). In addition, it is necessary that the HTF does not exceed its own maximum operating temperature, above which it degrades. The optimum temperature of the HTF is difficult to obtain, since the working conditions of the plant can change abruptly from moment to moment. Guaranteeing that this HTF operates at its optimal temperature to produce electricity through a Rankine cycle is a priority. The oil flowing through the solar field has the disadvantage of having a thermal limit. Therefore, this research focuses on trying to make sure that this fluid comes out of the solar field with the highest possible temperature. Modeling using data mining is revealed as an important tool for forecasting the performance of this kind of power plant. The purpose of this document is to provide a model that can be used to optimize the temperature control of the fluid without interfering with the normal operation of the plant. The results obtained with this model should be necessarily contrasted with those obtained in a real plant. Initially, we compare the PID (proportional–integral–derivative) models used in previous studies for the optimization of this type of plant with modeling using the multivariate adaptive regression splines (MARS) model.


2018 ◽  
Vol 225 ◽  
pp. 04003
Author(s):  
Hashem Shatnawi ◽  
Chin Wai Lim ◽  
Firas Basim Ismail

This study delves into several engineering procedures related to solar power tower plants. These installations come with central receiver system technologies and high-temperature power cycles. Besides a summary emphasizing on the fundamental components of a solar power tower, this paper also forwards a description of three receiver designs. Namely, these are the tubular receiver, the volumetric receiver and the direct absorber receiver. A variety of heat transfer mediums were assessed, while a comprehensive explanation was provided on the elements of external solar cylindrical receivers. This explanation covers tube material, molten salt, tube diameter and heat flux.


Sign in / Sign up

Export Citation Format

Share Document