The degradation of sulfamilamide wastewater by three-dimensional electrocatalytic oxidation system composed of activated carbon bimetallic particle electrode

2021 ◽  
pp. 129256
Author(s):  
Jiaqi Bu ◽  
Zhiwei Deng ◽  
Hui Liu ◽  
Tianhao Li ◽  
Yanjing Yang ◽  
...  
Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3121
Author(s):  
Hosna Ghanbarlou ◽  
Nikoline Loklindt Pedersen ◽  
Morten Enggrob Simonsen ◽  
Jens Muff

The synergy between electrochemical oxidation and adsorption on particle electrodes was investigated in three-dimensional (3D) systems for p-nitrosodimethylaniline (RNO) decolorization and pesticide removal. A comparison was made between granular activated carbon (GAC) and a novel synthesized nitrogen-doped graphene-based particle electrode (NCPE). Experiments on RNO decolorization show that the synergy parameter of the 3D-NCPE system was improved 3000 times compared to the studied 3D-GAC system. This was due to the specific nanostructure and composition of the NCPE material. Nitrogen-doped graphene triggered an oxygen reduction reaction, producing hydrogen peroxide that simultaneously catalyzed on iron sites of the NCPEs to hydroxyl radicals following the electro-Fenton (EF) process. Data showed that in the experimental setup used for the study, the applied cell voltage required for the optimal value of the synergy parameter could be lowered to 5V in the 3D-NCPEs process, which is significantly better than the 15–20 V needed for synergy to be found in the 3D-GAC process. Compared to previous studies with 3D-GAC, the removal of pesticides 2,6 dichlorobenzamide (BAM), 2-methyl-4-chlorophenoxyaceticacid (MCPA), and methylchlorophenoxypropionic acid (MCPP) was also enhanced in the 3D-NCPE system.


Langmuir ◽  
2002 ◽  
Vol 18 (17) ◽  
pp. 6536-6547
Author(s):  
Bradley A. King ◽  
Duong D. Do

2012 ◽  
Vol 23 (6) ◽  
pp. 1465-1478 ◽  
Author(s):  
Wen-Ying Huang ◽  
Chia-Lin Yeh ◽  
Jui-Hsiang Lin ◽  
Jai-Sing Yang ◽  
Tse-Hao Ko ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 574
Author(s):  
Emilius Sudirjo ◽  
Paola Y. Constantino Diaz ◽  
Matteo Cociancich ◽  
Rens Lisman ◽  
Christian Snik ◽  
...  

Large-scale implementation of (plant) microbial fuel cells is greatly limited by high electrode costs. In this work, the potential of exploiting electrochemically active self-assembled biofilms in fabricating three-dimensional bioelectrodes for (plant) microbial fuel cells with minimum use of electrode materials was studied. Three-dimensional robust bioanodes were successfully developed with inexpensive polyurethane foams (PU) and activated carbon (AC). The PU/AC electrode bases were fabricated via a water-based sorption of AC particles on the surface of the PU cubes. The electrical current was enhanced by growth of bacteria on the PU/AC bioanode while sole current collectors produced minor current. Growth and electrochemical activity of the biofilm were shown with SEM imaging and DNA sequencing of the microbial community. The electric conductivity of the PU/AC electrode enhanced over time during bioanode development. The maximum current and power density of an acetate fed MFC reached 3 mA·m−2 projected surface area of anode compartment and 22 mW·m−3 anode compartment. The field test of the Plant-MFC reached a maximum performance of 0.9 mW·m−2 plant growth area (PGA) at a current density of 5.6 mA·m−2 PGA. A paddy field test showed that the PU/AC electrode was suitable as an anode material in combination with a graphite felt cathode. Finally, this study offers insights on the role of electrochemically active biofilms as natural enhancers of the conductivity of electrodes and as transformers of inert low-cost electrode materials into living electron acceptors.


2011 ◽  
Vol 71-78 ◽  
pp. 2169-2172 ◽  
Author(s):  
Zhi Gang Liu ◽  
Wei Shi ◽  
Yan Sheng Li ◽  
Shao Min Zhu

The removal of phenol wastewater was experimentally investigated using a three-dimensional electrode reactor with granular activated carbon and titanium filter electrode arrays. The effects of the electric current, the residence time and the initial concentration on the phenol removal were evaluated. For the initial concentration of 490 mg/L, the phenol removal was obtained as 90% under the conditions of electric current 2 A, residence time 40 min. The effluent path of the electrochemical cell was optimized, using the anode effluent instead of the top effluent, where the phenol and COD removal was both increased to 95% and the corresponding energy consumption was decreased from 9.66 to 7.63 kWh/kg COD.


Sign in / Sign up

Export Citation Format

Share Document