Effect of long-term fertilization on greenhouse gas emissions and carbon footprints in northwest China: A field scale investigation using wheat-maize-fallow rotation cycles

2021 ◽  
pp. 130075
Author(s):  
Qudsia Saeed ◽  
Afeng Zhang ◽  
Adnan Mustafa ◽  
Benhua Sun ◽  
Shulan Zhang ◽  
...  
2008 ◽  
Vol 23 (3) ◽  
Author(s):  
Adriaan Perrels ◽  
Juha-Matti Katajajuuri

To reach the long-term goal of substantially reducing greenhouse gas emissions, the consumption of households is a crucial factor. To address consumers and change their behaviour towards a more climate-friendly lifestyle, new policy instruments are needed


2009 ◽  
pp. 107-120 ◽  
Author(s):  
I. Bashmakov

On the eve of the worldwide negotiations of a new climate agreement in December 2009 in Copenhagen it is important to clearly understand what Russia can do to mitigate energy-related greenhouse gas emissions in the medium (until 2020) and in the long term (until 2050). The paper investigates this issue using modeling tools and scenario approach. It concludes that transition to the "Low-Carbon Russia" scenarios must be accomplished in 2020—2030 or sooner, not only to mitigate emissions, but to block potential energy shortages and its costliness which can hinder economic growth.


1999 ◽  
Vol 13 (2) ◽  
pp. 503-517 ◽  
Author(s):  
Corinne Galy-Lacaux ◽  
Robert Delmas ◽  
Georges Kouadio ◽  
Sandrine Richard ◽  
Philippe Gosse

2006 ◽  
Vol 35 (3) ◽  
pp. 714-725 ◽  
Author(s):  
Juhwan Lee ◽  
Johan Six ◽  
Amy P. King ◽  
Chris van Kessel ◽  
Dennis E. Rolston

Author(s):  
Ingeborg Levin ◽  
Samuel Hammer ◽  
Elke Eichelmann ◽  
Felix R. Vogel

Independent verification of greenhouse gas emissions reporting is a legal requirement of the Kyoto Protocol, which has not yet been fully accomplished. Here, we show that dedicated long-term atmospheric measurements of greenhouse gases, such as carbon dioxide (CO 2 ) and methane (CH 4 ), continuously conducted at polluted sites can provide the necessary tool for this undertaking. From our measurements at the semi-polluted Heidelberg site in the upper Rhine Valley, we find that in the catchment area CH 4 emissions decreased on average by 32±6% from the second half of the 1990s until the first half of the 2000s, but the observed long-term trend of emissions is considerably smaller than that previously reported for southwest Germany. In contrast, regional fossil fuel CO 2 levels, estimated from high-precision 14 CO 2 observations, do not show any significant decreasing trend since 1986, in agreement with the reported emissions for this region. In order to provide accurate verification, these regional measurements would best be accompanied by adequate atmospheric transport modelling as required to precisely determine the relevant catchment area of the measurements. Furthermore, reliable reconciliation of reported emissions will only be possible if these are known at high spatial resolution in the catchment area of the observations. This information should principally be available in all countries that regularly report their greenhouse gas emissions to the United Nations Framework Convention on Climate Change.


2019 ◽  
Vol 15 ◽  
pp. 01030
Author(s):  
E. Adoir ◽  
S. Penavayre ◽  
T. Petitjean ◽  
L. De Rességuier

Viticulture faces two challenges regarding climate change: adapting and mitigating greenhouse gas emissions. Are these two challenges compatible? This is one of the questions to which Adviclim project (Life project, 2014–2019) provided tools and answers. The assessment of greenhouse gas emissions was implemented at the scale of the plot using a life cycle approach: calculating the carbon footprint. This approach makes it possible to take into account the emissions generated during each stage of the life cycle of a product or a service: in this case, the cultivation of one hectare of vine for one year. Carbon footprint was assessed for the 5 pilot sites of the Adviclim project: Saint-Emilion (France), Coteaux du Layon/Samur (France), Geisenheim (Germany), Cotnari (Romania) and Plompton (United Kingdom). An important work for primary data collection regarding observed practices was carried out with a sample of reresentative farms for these 5 sites, and for one to three vintages depending on the site. Beyond the question asked in the project, the calculation of these carbon footprints made it possible to (i) make winegrowers aware of the life cycle approach and the share of direct emissions generated by viticulture, (ii) acquire new references on the technical itineraries and their associated emissions, (iii) improve the adaptation of the methodology for calculating the carbon footprint to viticulture.


Agronomy ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 50
Author(s):  
Ralf Liebermann ◽  
Lutz Breuer ◽  
Tobias Houska ◽  
David Kraus ◽  
Gerald Moser ◽  
...  

The rising atmospheric CO2 concentrations have effects on the worldwide ecosystems such as an increase in biomass production as well as changing soil processes and conditions. Since this affects the ecosystem’s net balance of greenhouse gas emissions, reliable projections about the CO2 impact are required. Deterministic models can capture the interrelated biological, hydrological, and biogeochemical processes under changing CO2 concentrations if long-term observations for model testing are provided. We used 13 years of data on above-ground biomass production, soil moisture, and emissions of CO2 and N2O from the Free Air Carbon dioxide Enrichment (FACE) grassland experiment in Giessen, Germany. Then, the LandscapeDNDC ecosystem model was calibrated with data measured under current CO2 concentrations and validated under elevated CO2. Depending on the hydrological conditions, different CO2 effects were observed and captured well for all ecosystem variables but N2O emissions. Confidence intervals of ensemble simulations covered up to 96% of measured biomass and CO2 emission values, while soil water content was well simulated in terms of annual cycle and location-specific CO2 effects. N2O emissions under elevated CO2 could not be reproduced, presumably due to a rarely considered mineralization process of organic nitrogen, which is not yet included in LandscapeDNDC.


2015 ◽  
Vol 59 (1) ◽  
Author(s):  
Hannah Witting

Standards as a controlling mechanism: Methods and effects of carbon footprinting in the logistic sector. Carbon footprints describe the greenhouse gas emissions of predefined objects, such as products, companies, persons or transport units. Corresponding emission calculation standards have been developed and their application increased over the past decade. The article discusses this development, the current state of implementation and open questions regarding application and harmonization using the example of the logistic sector. Additionally, the author explores the question, how carbon footprints contribute to CO


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Colin Skinner ◽  
Andreas Gattinger ◽  
Maike Krauss ◽  
Hans-Martin Krause ◽  
Jochen Mayer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document