Prediction of oral absorption of griseofulvin, a BCS class II drug, based on GITA model: Utilization of a more suitable medium for in-vitro dissolution study

2007 ◽  
Vol 119 (2) ◽  
pp. 222-228 ◽  
Author(s):  
Yoshitsugu Fujioka ◽  
Keitaro Kadono ◽  
Yasuko Fujie ◽  
Yukiko Metsugi ◽  
Ken-ichi Ogawara ◽  
...  
2020 ◽  
Vol 10 (5) ◽  
pp. 649-663
Author(s):  
Reena Siwach ◽  
Parijat Pandey ◽  
Harish Dureja

Background: The rate-limiting step in the oral absorption of BCS class II drugs is dissolution. Their low solubility is one of the major obstacles in the process of drug development. Dissolution rate can be increased by decreasing the particle size to the nano range, eventually leading to increased bioavailability. Objective: : In the present study, glimepiride loaded nanoparticles were prepared to enhance the dissolution rate. The aim of the work was to examine the effect of polymer-drug ratio, solvent-antisolvent ratio and speed of mixing on in vitro release of glimepiride. Methods: Glimepiride is an antidiabetic drug belonging to the BCS class II drugs. The polymeric nanoparticles were formulated according to Box-Behnken Design (BBD) using nanoprecipitation technique. The prepared nanoparticles were evaluated for in vitro drug release, loading capacity, entrapment efficiency, and percentage yield. Result: It was found that NP-8 has maximum in vitro drug release and was selected as an optimized batch. Analysis of Variance (ANOVA) was applied to the in vitro drug release to study the fitness and significance of the model. The batch NP-8 showed 70.34 ± 1.09% in vitro drug release in 0.1 N methanolic HCl and 92.02 ± 1.87% drug release in phosphate buffer pH 7.8. The release data revealed that the nanoparticles followed zero order kinetics. Conclusion: The study revealed that the incorporation of glimepiride into gelucire 50/13 resulted in enhanced dissolution rate.


Author(s):  
RAHUL RADKE ◽  
NEETESH K. JAIN

Objective: The aim of this investigation was to enhance the solubility and bioavailability of the BCS class II poorly water-soluble drug ambrisentan by solid dispersion (SD) techniques using Gelucire 50/13 as a hydrophilic carrier. Methods: Solid dispersion of ambrisentan was prepared by kneading method using different dug: carrier ratios. Prepared SD was characterized for solubility, drug content, percentage yield, in vitro dissolution, ex vivo permeation and bioavailability. Solid-state characterization was performed by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results: All the SDs formulations showed increase in drug solubility and dissolution when compared with its pure form. Aqueous solubility of the drug was found to be increased 8.23 fold in SD. DSC study showed that endothermic peak of the drug was disappeared in spectra of SD, confirming its amorphous conversion, XRD study revealed the reduction to almost absence of specific high-intensity peaks of drug which confirmed the reduction of crysatallinity of ambrisentan in SD. SEM of optimized SD formulation demonstrates the complete encapsulation and solubilization drug. In vitro dissolution study showed that optimized SD formulation (ASD4) gives the faster drug release of 101.5% in 60 min, as compare to its pure form and other SD formulations. Conclusion: Solid dispersion ASD4 prepared with 1:4 drug to carrier ratio showed the highest drug solubility and in vitro dissolution. The ex vivo and in vivo studies performed on optimized formulation ASD4 showed enhancement in drug permeability and bioavailability in Gelucire 50/13 based SD formulation.


Author(s):  
Madhavi Kasturi ◽  
Neelesh Malviya

Aims: The main objective of the current research work is to develop liquisolid compacts of BCS Class II drug ketoprofen with an intention to enhance the solubility of drug by applying liquisolid technique. Place and Duration of Study: Smriti College of Pharmaceutical Education between June 2018 June 2019. Methodology: Initially liquid medication was obtained by dissolving drug in suitable solvent. Saturation solubility studies were performed in various hydrophilic non-volatile solvents to select the solvent showing highest solubility for drug. This liquid medication was admixed with calculated amounts of carrier material (Avicel PH 102) and coating material (Cab-O-Sil) using Spireas mathematical model in order to obtain liquisolid formulations. Further, this powder mass of liquisolid system was compressed to form Ketoprofen liquisolid compact formulations ranging from TK1 to TK9. They were further subjected to post compression evaluation tests such as weight variation, hardness, friability, content uniformity, disintegration and in vitro dissolution studies. Results: Based on the solubility studies, PEG 400 was selected as solvent for ketoprofen drug. Rheological properties for the prepared liquisolid powder system were performed for all the formulations and they showed acceptable flow properties. The results obtained for the post compression evaluation tests of all the prepared liquisolid compacts were present within the acceptable limits. The disintegration time observed for all formulations were within 5 minutes. The results of in vitro release of all the liquisolid compacts showed enhanced release rates compared to that of directly compressed tablet. Lquisolid compact formulation TK7 showed maximum release of 97.62% of drug within 12 minutes in pH 7.4 phosphate buffer which was much higher when compared to that of directly compressed tablet. The SEM and PXRD studies for TK7 revealed conversion of crystalline to molecularly dispersed form of drug in the obtained liquisolid formulation. DSC and FTIR studies also revealed that there was no presence of any significant interaction between drug and excipients involved in the formulation. Conclusion: Finally, it could be concluded that Liquisolid technique was successful in enhancing the solubility and further dissolution profile of BCS Class II drug Ketoprofen.


Author(s):  
Surender Verma ◽  
S. Singh ◽  
D. Mishra ◽  
Atul Gupta ◽  
Rakesh Sharma

The objective of present study was to develop colon targeted drug delivery using bacterially triggered approach through oral route. Valdecoxib (COX-2 inhibitor) was chosen as a model drug in order to target it to colon which may prove useful in inflammatory bowel disease and related disorders. Matrix tablets of Valdecoxib were prepared by wet granulation technique utilizing different ratio of Guar gum and Sodium starch glycholate. The prepared matrix tablets were evaluated for uniformity of weight, uniformity of content, hardness and in vitro dissolution study in simulated gastric and intestinal fluid (Phosphate Buffer pH-1.2, pH-6.8 and pH-7.4), followed by Dissolution study in bio-relevant dissolution media Phosphate Buffer (pH-6.8) containing rat caecal content. The results revealed that the formulated batch had released lesser quantity of drug at pH 1.2 and pH 7.4 in 2 hors whereas in biorelevent dissolution media containing rat caecal content it released significantly higher amount of drug which was also significantly higher than the dissolution media of same pH without caecal content (microflora) and it was concluded that guar gum can be used as a potential carrier for targeting drugs to colon.


Author(s):  
Sidra Nasir ◽  
Amjad Hussain ◽  
Nasir Abbas ◽  
Nadeem Irfan Bukhari ◽  
Fahad Hussain ◽  
...  
Keyword(s):  
Class Ii ◽  

2007 ◽  
Vol 127 (1-4) ◽  
pp. 60-63 ◽  
Author(s):  
E. E. Aladova ◽  
S. A. Romanov ◽  
R. A. Guilmette ◽  
V. F. Khokhryakov ◽  
K. G. Suslova

INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (12) ◽  
pp. 34-40
Author(s):  
M Panchpuri ◽  
◽  
D Singh ◽  
A Semalty ◽  
M. Semalty

Ofloxacin, a second generation fluoroquinolone, shows poor aqueous solubility and dissolution profile. Thus, ofloxacin–β-cyclodextrin complexes were prepared to improve its dissolution by imparting an environment of improved hydrophilicity. Ofloxacin was complexed with β-cyclodextrin (in 1:1 and 1:2 molar ratio) by two different methods namely, solvent evaporation and kneading method. These inclusion complexes were evaluated for solubility, drug content, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X ray powder diffraction (XRPD) and in vitro dissolution study. The highest drug content (35.45%) was found in complex made by kneading method (OK1:1) in 1:1 molar ratio. All the complexes OSE1:1, OSE1:2, OK1:1, OK1:2 were found to be showing rough and porous surface morphology in SEM. Solubility as well as the dissolution of the complexes was found to be improved. Complex prepared by kneading method in 1:1 molar ratio (OK1:1) showed a marked improvement in percent drug release (88.94%) than that of pure drug (54.22%) at the end of 1 hour in dissolution study. FTIR, DSC and XRPD data confirmed the formation of inclusion complex. It was concluded that the complex made in 1:1 molar ratio (irrespective of the method) showed better solubility and dissolution profile as compared to complex made in 1:2 molar ratio.


Sign in / Sign up

Export Citation Format

Share Document