Controlling carbon formation over Ni/CeO2 catalyst for dry reforming of CH4 by tuning Ni crystallite size and oxygen vacancies of the support

2022 ◽  
Vol 57 ◽  
pp. 101880
Author(s):  
Renata O. da Fonseca ◽  
Antonella R. Ponseggi ◽  
Raimundo C. Rabelo-Neto ◽  
Rita C.C. Simões ◽  
Lisiane V. Mattos ◽  
...  
2017 ◽  
Vol 7 (22) ◽  
pp. 5422-5434 ◽  
Author(s):  
Michalis A. Vasiliades ◽  
Petar Djinović ◽  
Albin Pintar ◽  
Janez Kovač ◽  
Angelos M. Efstathiou

The kinetic rate of inactive and active carbon formation in DRM over CeZrO2-supported NiCo alloy particles depends on the support's oxygen mobility.


2020 ◽  
Vol 594 ◽  
pp. 117439 ◽  
Author(s):  
Yaqian Wei ◽  
Xiu Liu ◽  
Noura Haidar ◽  
Hervé Jobic ◽  
Sébastien Paul ◽  
...  

2020 ◽  
Vol 20 (5) ◽  
pp. 2791-2802
Author(s):  
Duangamol Ongmali ◽  
Sakollapath Pithakratanayothin ◽  
Sureerat Jampa ◽  
Apanee Luengnaruemitrchai ◽  
Thanyalak Chaisuwan ◽  
...  

In this work, a ceria (CeO2) support was modified with titania (TiO2) by nanocasting using MCM-48 as a hard template and then loading Cu (as the nitrate salt) at different levels (3–9% by weight) by deposition-precipitation followed by calcination. The addition of TiO2 in MSP CeO2 revealed that the MSP CeO2 was significantly improved the oxygen vacancies of the catalyst by increasing the Ce3+ content from 38 to 75% and stabilizing the Ce3+ species by bonding with the oxygen as Ce(4f)-O(2p)-Ti(3d). Moreover, the bonding of MSP CeO2 with TiO2 generated the oxygen defect vacancies (s–Ti3+), allowing Cu2+ to occupy and be reduced to Cu+ during calcination. The smaller CeO2 crystallite size (2.7 nm) of 9Cu/CeO2–TiO2 increased the mass-specific CO-Oxidation, showing the best catalytic activity due to its highest redox properties, as determined by H2-TPR and also showing resistant property to water and carbon dioxide. Indeed, water was adsorbed on the Ce3+ sites, generating OHads which reacted with CO to form –COOH, resulting in CO2.


2017 ◽  
Vol 17 ◽  
pp. 127-130
Author(s):  
J. Dhanalakshmi ◽  
D. Pathinettam Padiyan

Dy2O3-TiO2 nanocomposites with different weight percentage (0, 2, 4, 8 & 10)Dy were synthesized bysol-gel method and named as 0DT, 2DT, 4DT, 6DT, 8DT and 10DT. The structural properties of these nanocomposites are characterized by X-ray diffraction (XRD) and Raman spectroscopy. XRD results show that Dy2O3-TiO2 nanocomposites have anatase phase with tetragonal structure. The average crystallite size of the Dy2O3-TiO2 nanocomposites lies between 10 to 18 nm.Coupling of Dy with TiO2 shifts the Raman band to higher wavenumber side indicating the creation of oxygen vacancies in the TiO2 lattice.


Author(s):  
McKenzie P. Kohn ◽  
Marco J. Castaldi ◽  
Robert J. Farrauto

Landfills are the second-largest source of anthropogenic methane emissions in the U.S., accounting for 22% of CH4 emissions. Landfill gas (LFG) is primarily composed of CH4 and CO2, and currently only 18% of this is used for energy. Because landfills will continue to be used for the foreseeable future, complete utilization of LFG is becoming more important as the demand for energy increases. Catalytically reforming LFG produces syngas (H2 and CO) that can be converted to liquid fuels or mixed into the LFG stream to produce a more reactive, cleaner burning fuel. It has been demonstrated that injecting 5% syngas into a simulated LFG mixture prior to engine combustion decreases CO, UHC, and NOx emissions by 73%, 89%, and 38%, respectively. One barrier to using LFG in a catalytic system is the contaminant content of the LFG, including chlorine and sulfur compounds, higher order hydrocarbons, and siloxanes that have the potential to poison a catalyst. Chlorinated compounds are present in LFG at 10–100ppm levels and are often found as chlorocarbons. This research explores the effect of methyl chloride on the activity of a Rh/γ-Al2O3 catalyst while dry reforming LFG to syngas. It has been found that methyl chloride acts as a reversible poison on the dry reforming reaction, causing a loss in dry reforming activity, decrease in syngas production, and increase in H2/CO ratio while CH3Cl is present in the feed. CH3Cl exposure also decreases the acidity of the catalyst which decreases carbon formation and deactivation due to coking.


Chemistry ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Cameron Price ◽  
Emily Earles ◽  
Laura Pastor-Pérez ◽  
Jian Liu ◽  
Tomas Reina

Encapsulation of metal nanoparticles is a leading technique used to inhibit the main deactivation mechanisms in dry reforming of methane reaction (DRM): Carbon formation and Sintering. Ni catalysts (15%) supported on alumina (Al2O3) and ceria (CeO2) have shown they are no exception to this analysis. The alumina supported catalysts experienced graphitic carbonaceous deposits, whilst the ceria showed considerable sintering over 15 h of DRM reaction. The effect of encapsulation compared to that of the performance of uncoated catalysts for DRM reaction has been examined at different temperatures, before conducting longer stability tests. The encapsulation of Ni/ZnO cores in silica (SiO2) leads to advantageous conversion of both CO2 and CH4 at high temperatures compared to its uncoated alternatives. This work showcases the significance of the encapsulation process and its overall effects on the catalytic performance in chemical CO2 recycling via DRM.


Sign in / Sign up

Export Citation Format

Share Document