scholarly journals CeNiXAl0.5HZOY nano-oxyhydrides for H2 production by oxidative dry reforming of CH4 without carbon formation

2020 ◽  
Vol 594 ◽  
pp. 117439 ◽  
Author(s):  
Yaqian Wei ◽  
Xiu Liu ◽  
Noura Haidar ◽  
Hervé Jobic ◽  
Sébastien Paul ◽  
...  
Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 157
Author(s):  
Ahmed Sadeq Al-Fatesh ◽  
Mayankkumar Lakshmanbhai Chaudhary ◽  
Anis Hamza Fakeeha ◽  
Ahmed Aidid Ibrahim ◽  
Fahad Al-Mubaddel ◽  
...  

H2 production through dry reforming of methane (DRM) is a hot topic amidst growing environmental and atom-economy concerns. Loading Ni-based reducible mixed oxide systems onto a thermally stable support is a reliable approach for obtaining catalysts of good dispersion and high stability. Herein, NiO was dispersed over MOx-modified-γ-Al2O3 (M = Ti, Mo, Si, or W; x = 2 or 3) through incipient wetness impregnation followed by calcination. The obtained catalyst systems were characterized by infrared, ultraviolet–visible, and X-ray photoelectron spectroscopies, and H2 temperature-programmed reduction. The mentioned synthetic procedure afforded the proper nucleation of different NiO-containing mixed oxides and/or interacting-NiO species. With different modifiers, the interaction of NiO with the γ-Al2O3 support was found to change, the Ni2+ environment was reformed exclusively, and the tendency of NiO species to undergo reduction was modified greatly. Catalyst systems 5Ni3MAl (M = Si, W) comprised a variety of species, whereby NiO interacted with the modifier and the support (e.g., NiSiO3, NiAl2O4, and NiWO3). These two catalyst systems displayed equal efficiency, >70% H2 yield at 800 °C, and were thermally stable for up to 420 min on stream. 5Ni3SiAl catalyst regained nearly all its activity during regeneration for up to two cycles.


2017 ◽  
Vol 7 (22) ◽  
pp. 5422-5434 ◽  
Author(s):  
Michalis A. Vasiliades ◽  
Petar Djinović ◽  
Albin Pintar ◽  
Janez Kovač ◽  
Angelos M. Efstathiou

The kinetic rate of inactive and active carbon formation in DRM over CeZrO2-supported NiCo alloy particles depends on the support's oxygen mobility.


Author(s):  
McKenzie P. Kohn ◽  
Marco J. Castaldi ◽  
Robert J. Farrauto

Landfills are the second-largest source of anthropogenic methane emissions in the U.S., accounting for 22% of CH4 emissions. Landfill gas (LFG) is primarily composed of CH4 and CO2, and currently only 18% of this is used for energy. Because landfills will continue to be used for the foreseeable future, complete utilization of LFG is becoming more important as the demand for energy increases. Catalytically reforming LFG produces syngas (H2 and CO) that can be converted to liquid fuels or mixed into the LFG stream to produce a more reactive, cleaner burning fuel. It has been demonstrated that injecting 5% syngas into a simulated LFG mixture prior to engine combustion decreases CO, UHC, and NOx emissions by 73%, 89%, and 38%, respectively. One barrier to using LFG in a catalytic system is the contaminant content of the LFG, including chlorine and sulfur compounds, higher order hydrocarbons, and siloxanes that have the potential to poison a catalyst. Chlorinated compounds are present in LFG at 10–100ppm levels and are often found as chlorocarbons. This research explores the effect of methyl chloride on the activity of a Rh/γ-Al2O3 catalyst while dry reforming LFG to syngas. It has been found that methyl chloride acts as a reversible poison on the dry reforming reaction, causing a loss in dry reforming activity, decrease in syngas production, and increase in H2/CO ratio while CH3Cl is present in the feed. CH3Cl exposure also decreases the acidity of the catalyst which decreases carbon formation and deactivation due to coking.


Chemistry ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Cameron Price ◽  
Emily Earles ◽  
Laura Pastor-Pérez ◽  
Jian Liu ◽  
Tomas Reina

Encapsulation of metal nanoparticles is a leading technique used to inhibit the main deactivation mechanisms in dry reforming of methane reaction (DRM): Carbon formation and Sintering. Ni catalysts (15%) supported on alumina (Al2O3) and ceria (CeO2) have shown they are no exception to this analysis. The alumina supported catalysts experienced graphitic carbonaceous deposits, whilst the ceria showed considerable sintering over 15 h of DRM reaction. The effect of encapsulation compared to that of the performance of uncoated catalysts for DRM reaction has been examined at different temperatures, before conducting longer stability tests. The encapsulation of Ni/ZnO cores in silica (SiO2) leads to advantageous conversion of both CO2 and CH4 at high temperatures compared to its uncoated alternatives. This work showcases the significance of the encapsulation process and its overall effects on the catalytic performance in chemical CO2 recycling via DRM.


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1015 ◽  
Author(s):  
Jie Yu ◽  
José A. Odriozola ◽  
Tomas R. Reina

Dry reforming of ethanol and glycerol using CO2 are promising technologies for H2 production while mitigating CO2 emission. Current studies mainly focused on steam reforming technology, while dry reforming has been typically less studied. Nevertheless, the urgent problem of CO2 emissions directly linked to global warming has sparked a renewed interest on the catalysis community to pursue dry reforming routes. Indeed, dry reforming represents a straightforward route to utilize CO2 while producing added value products such as syngas or hydrogen. In the absence of catalysts, the direct decomposition for H2 production is less efficient. In this mini-review, ethanol and glycerol dry reforming processes have been discussed including their mechanistic aspects and strategies for catalysts successful design. The effect of support and promoters is addressed for better elucidating the catalytic mechanism of dry reforming of ethanol and glycerol. Activity and stability of state-of-the-art catalysts are comprehensively discussed in this review along with challenges and future opportunities to further develop the dry reforming routes as viable CO2 utilization alternatives.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2894
Author(s):  
Van Thuan Le ◽  
Elena-Niculina Dragoi ◽  
Fares Almomani ◽  
Yasser Vasseghian

Dry reforming of hydrocarbons, alcohols, and biological compounds is one of the most promising and effective avenues to increase hydrogen (H2) production. Catalytic dry reforming is used to facilitate the reforming process. The most popular catalysts for dry reforming are Ni-based catalysts. Due to their inactivation at high temperatures, these catalysts need to use metal supports, which have received special attention from researchers in recent years. Due to the existence of a wide range of metal supports and the need for accurate detection of higher H2 production, in this study, a systematic review and meta-analysis using ANNs were conducted to assess the hydrogen production by various catalysts in the dry reforming process. The Scopus, Embase, and Web of Science databases were investigated to retrieve the related articles from 1 January 2000 until 20 January 2021. Forty-seven articles containing 100 studies were included. To determine optimal models for three target factors (hydrocarbon conversion, hydrogen yield, and stability test time), artificial neural networks (ANNs) combined with differential evolution (DE) were applied. The best models obtained had an average relative error for the testing data of 0.52% for conversion, 3.36% for stability, and 0.03% for yield. These small differences between experimental results and predictions indicate a good generalization capability.


Sign in / Sign up

Export Citation Format

Share Document