scholarly journals Instantaneous turbulent kinetic energy modelling based on Lagrangian stochastic approach in CFD and application to wind energy

2022 ◽  
pp. 110929
Author(s):  
Mireille Bossy ◽  
Jean-François Jabir ◽  
Kerlyns Martínez Rodríguez
2016 ◽  
Vol 99 ◽  
pp. 898-910 ◽  
Author(s):  
Valerie-M. Kumer ◽  
Joachim Reuder ◽  
Manfred Dorninger ◽  
Rudolf Zauner ◽  
Vanda Grubišić

2021 ◽  
Author(s):  
Kerlyns Martínez ◽  
Mireille Bossy ◽  
Jean-François Jabir

<p>In order to better integrate the underlying meteorological processes with the developing technologies within wind energy industry, acquiring relevant statistical information of air motion at a local place, and quantifying the subsequent uncertainty of involved parameters in the models, are fundamental tasks. Special emphasis should be made on the growing interest in energy production forecasting and modelling for wind energy developments that rises the issue of accounting for the uncertain nature of the local forecast. Taking this into consideration, we present the construction of an original stochastic model for the instantaneous turbulent kinetic energy at a given point of a flow, and we validate estimator methods on this model with observational data examples from annual historic of a 10 Hz anemometer wind measurements. <br>More precisely, starting from the viewpoint of Lagrangian modelling of the wind in the boundary layer, we establish a mathematical link between 3D+time computational fluid dynamics (CDF) models for turbulent near-wall flows and stochastic time series models by deriving a family of mean-field dynamics featuring the square norm of the turbulent velocity. Then, by approximating at equilibrium the characteristic nonlinear terms of the dynamics, we recover the so called Cox-Ingersoll-Ross stochastic model, which was previously suggested in the literature for modelling wind speed. Remarkably, our stochastic model for the instantaneous turbulent kinetic energy is parametrised by physical constants in CFD, which provides a more direct link between the stochastic nature of the underlying processes and the classical physics behind these phenomena. Nevertheless, these physical parameters may vary with the flow characteristics and situations, so we consider it relevant to adjust their values while constructing the forecasts. Such tuning of the physical parameters was previously proposed in the literature from a deterministic modelling context with RANS equations. We then propose a two-step procedure for the calibration of the parameters: a training stage where we construct a priori distribution for the parameter vector using direct methods and wind measurements, and a stage of refinement of the uncertainty distribution using Bayesian inference combined with Markov Chain Monte Carlo sample techniques. In particular, we show the accuracy of the calibration method and the performance of the calibrated model in predicting the wind distribution through the quantification of uncertainty.</p>


2021 ◽  
Vol 6 (7) ◽  
Author(s):  
Mohammad Allouche ◽  
Gabriel G. Katul ◽  
Jose D. Fuentes ◽  
Elie Bou-Zeid

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4136
Author(s):  
Clemens Gößnitzer ◽  
Shawn Givler

Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limitations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling control strategies, improving engine design and reducing the negative impact of CCV on engine operation. This paper presents a new simulation strategy which allows investigation of the impact of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle, simulation results just prior to each spark timing are taken. Next, simulation results from different cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle, and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a new snapshot. With the combined snapshot, the simulation is continued until the end of combustion. The results obtained with combined snapshots show that the velocity field seems to have the highest impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small compared to the flow field. This novel methodology is very flexible and allows investigation of the sources of CCV which have been difficult to investigate in the past.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 421
Author(s):  
Alexander Potekaev ◽  
Liudmila Shamanaeva ◽  
Valentina Kulagina

Spatiotemporal dynamics of the atmospheric kinetic energy and its components caused by the ordered and turbulent motions of air masses are estimated from minisodar measurements of three velocity vector components and their variances within the lowest 5–200 m layer of the atmosphere, with a particular emphasis on the turbulent kinetic energy. The layered structure of the total atmospheric kinetic energy has been established. From the diurnal hourly dynamics of the altitude profiles of the turbulent kinetic energy (TKE) retrieved from minisodar data, four layers are established by the character of the altitude TKE dependence, namely, the near-ground layer, the surface layer, the layer with a linear TKE increase, and the transitive layer above. In the first layer, the most significant changes of the TKE were observed in the evening hours. In the second layer, no significant changes in the TKE values were observed. A linear increase in the TKE values with altitude was observed in the third layer. In the fourth layer, the TKE slightly increased with altitude and exhibited variations during the entire observation period. The altitudes of the upper boundaries of these layers depended on the time of day. The MKE values were much less than the corresponding TKE values, they did not exceed 50 m2/s2. From two to four MKE layers were distinguished based on the character of its altitude dependence. The two-layer structures were observed in the evening and at night (under conditions of the stable atmospheric boundary layer). In the morning and daytime, the four-layer MKE structures with intermediate layers of linear increase and subsequent decrease in the MKE values were observed. Our estimates demonstrated that the TKE contribution to the total atmospheric kinetic energy considerably (by a factor of 2.5–3) exceeded the corresponding MKE contribution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meisam Babanezhad ◽  
Iman Behroyan ◽  
Ali Taghvaie Nakhjiri ◽  
Mashallah Rezakazemi ◽  
Azam Marjani ◽  
...  

AbstractComputational fluid dynamics (CFD) simulating is a useful methodology for reduction of experiments and their associated costs. Although the CFD could predict all hydro-thermal parameters of fluid flows, the connections between such parameters with each other are impossible using this approach. Machine learning by the artificial intelligence (AI) algorithm has already shown the ability to intelligently record engineering data. However, there are no studies available to deeply investigate the implicit connections between the variables resulted from the CFD. The present investigation tries to conduct cooperation between the mechanistic CFD and the artificial algorithm. The genetic algorithm is combined with the fuzzy interface system (GAFIS). Turbulent forced convection of Al2O3/water nanofluid in a heated tube is simulated for inlet temperatures (i.e., 305, 310, 315, and 320 K). GAFIS learns nodes coordinates of the fluid, the inlet temperatures, and turbulent kinetic energy (TKE) as inputs. The fluid temperature is learned as output. The number of inputs, population size, and the component are checked for the best intelligence. Finally, at the best intelligence, a formula is developed to make a relationship between the output (i.e. nanofluid temperatures) and inputs (the coordinates of the nodes of the nanofluid, inlet temperature, and TKE). The results revealed that the GAFIS intelligence reaches the highest level when the input number, the population size, and the exponent are 5, 30, and 3, respectively. Adding the turbulent kinetic energy as the fifth input, the regression value increases from 0.95 to 0.98. This means that by considering the turbulent kinetic energy the GAFIS reaches a higher level of intelligence by distinguishing the more difference between the learned data. The CFD and GAFIS predicted the same values of the nanofluid temperature.


Sign in / Sign up

Export Citation Format

Share Document