Evaluation of improvement strategies of grain structure properties in high performance multi-crystalline silicon ingots

2019 ◽  
Vol 514 ◽  
pp. 114-123 ◽  
Author(s):  
M. Trempa ◽  
C. Kranert ◽  
I. Kupka ◽  
C. Reimann ◽  
J. Friedrich
Author(s):  
K. Ogura ◽  
H. Nishioka ◽  
N. Ikeo ◽  
T. Kanazawa ◽  
J. Teshima

Structural appraisal of thin film magnetic media is very important because their magnetic characters such as magnetic hysteresis and recording behaviors are drastically altered by the grain structure of the film. However, in general, the surface of thin film magnetic media of magnetic recording disk which is process completed is protected by several-nm thick sputtered carbon. Therefore, high-resolution observation of a cross-sectional plane of a disk is strongly required to see the fine structure of the thin film magnetic media. Additionally, observation of the top protection film is also very important in this field.Recently, several different process-completed magnetic disks were examined with a UHR-SEM, the JEOL JSM 890, which consisted of a field emission gun and a high-performance immerse lens. The disks were cut into approximately 10-mm squares, the bottom of these pieces were carved into more than half of the total thickness of the disks, and they were bent. There were many cracks on the bent disks. When these disks were observed with the UHR-SEM, it was very difficult to observe the fine structure of thin film magnetic media which appeared on the cracks, because of a very heavy contamination on the observing area.


Author(s):  
D. E. Newbury ◽  
R. D. Leapman

Trace constituents, which can be very loosely defined as those present at concentration levels below 1 percent, often exert influence on structure, properties, and performance far greater than what might be estimated from their proportion alone. Defining the role of trace constituents in the microstructure, or indeed even determining their location, makes great demands on the available array of microanalytical tools. These demands become increasingly more challenging as the dimensions of the volume element to be probed become smaller. For example, a cubic volume element of silicon with an edge dimension of 1 micrometer contains approximately 5×1010 atoms. High performance secondary ion mass spectrometry (SIMS) can be used to measure trace constituents to levels of hundreds of parts per billion from such a volume element (e. g., detection of at least 100 atoms to give 10% reproducibility with an overall detection efficiency of 1%, considering ionization, transmission, and counting).


2019 ◽  
Vol 14 ◽  
pp. 155892501989525
Author(s):  
Yu Yang ◽  
Yanyan Jia

Ultrafine crystallization of industrial pure titanium allowed for higher tensile strength, corrosion resistance, and thermal stability and is therefore widely used in medical instrumentation, aerospace, and passenger vehicle manufacturing. However, the ultrafine crystallizing batch preparation of tubular industrial pure titanium is limited by the development of the spinning process and has remained at the theoretical research stage. In this article, the tubular TA2 industrial pure titanium was taken as the research object, and the ultrafine crystal forming process based on “5-pass strong spin-heat treatment-3 pass-spreading-heat treatment” was proposed. Based on the spinning process test, the ultimate thinning rate of the method is explored and the evolution of the surface microstructure was analyzed by metallographic microscope. The research suggests that the multi-pass, medium–small, and thinning amount of spinning causes the grain structure to be elongated in the axial and tangential directions, and then refined, and the axial fiber uniformity is improved. The research results have certain scientific significance for reducing the consumption of high-performance metals improving material utilization and performance, which also promote the development of ultrafine-grain metals’ preparation technology.


2015 ◽  
Vol 418 ◽  
pp. 38-44 ◽  
Author(s):  
Thècle Riberi-Béridot ◽  
Nathalie Mangelinck-Noël ◽  
Amina Tandjaoui ◽  
Guillaume Reinhart ◽  
Bernard Billia ◽  
...  

Author(s):  
Li Xu ◽  
Costas P. Griogoropoulos

Ultra-large grain poly-crystalline silicon has been formed in 20 nm and 50 nm amorphous silicon films by the double laser crystallization (DLC) method. Surface reflection properties of such thin films upon laser irradiation were calculated. In-situ images were captured to monitor the transient melting and solidification process of 50 nm silicon film in order to understand the crystallization induced by steep laser intensity gradients. SEM (scanning electron microscope) images of crystallized 50 nm film after Secco etch revealed grain size up to 10 m while plane-view TEM (transmission electron microscope) images of 50 nm film also showed perfect crystalline structure inside the grains. AFM (atomic force microscope) images were also taken to show the topology of the grain structure and RMS of 20 nm film.


2020 ◽  
Vol 542 ◽  
pp. 125666 ◽  
Author(s):  
Qi Lei ◽  
Liang He ◽  
Senlin Rao ◽  
Changxin Tang ◽  
Liang Ming ◽  
...  

2019 ◽  
Vol 960 ◽  
pp. 263-267
Author(s):  
Huan Liu ◽  
Lei Zhao ◽  
Hong Wei Diao ◽  
Wen Jing Wang

It was found that the addition of MnO2 particles into the HF/HNO3/H2O system could significantly improve the texturization etching performance on multi-crystalline silicon (mc-Si) wafer. For a wide component ratio range of HF/HNO3/H2O from HF-rich to HNO3-rich, by optimizing the MnO2 usage and the etching time, the addition of MnO2 particles always reduced the texture reflectance greatly. Low weighted average surface reflectance (Ra) for the AM1.5G sun spectrum in the wavelength range of 380–1100 nm was achieved on both the slurry wire sliced (SWS) mc-Si and the diamond wire sliced (DWS) mc-Si. Due to its excellent effect and simple processing, the MnO2/HF/HNO3/H2O etching system can be expected as a candidate for high-performance texturization on mc-Si wafer, especially on DWS mc-Si wafer.


Sign in / Sign up

Export Citation Format

Share Document