Internal force and deformation of concrete-filled steel plate composite coupling beams

2014 ◽  
Vol 92 ◽  
pp. 150-163 ◽  
Author(s):  
Hong-Song Hu ◽  
Jianguo Nie ◽  
Matthew R. Eatherton
2014 ◽  
Vol 638-640 ◽  
pp. 283-286
Author(s):  
Li Song ◽  
Dong Chen ◽  
Bao Lei Li

The coupling beam work as an important component in coupled shear walls, the strength,stiffness and deformation properties of which have great influence on the seismic performance of shear walls, the steel plate reinforced concrete coupling beams have the advantages as follows: simplify the constructional details, make the construction convenient and reliable performance [1][2]. The numerical simulation model in this paper is a coupled shear wall connected by steel plate reinforced concrete coupling beams in reference [3], and the loading mode is the same as the reference [4] . The relative stiffness effect was explored by study the internal force and displacement of the model with changing the stiffness of the coupling beams and the shear walls while the span-depth ratio is stable .The study will provide a reference for the numerical simulation of the finite element simulation analysis of the coupling beams and the steel reinforced concrete structures.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1139-1142
Author(s):  
Bao Lei Li ◽  
Dong Chen ◽  
Cheng Fan ◽  
Li Song

In this paper, on the basis of specimen model size mentioned in steel reinforced concrete coupling beam stress performance research, using the ANSYS finite element software about coupling beam specimens with different steel plates for one-off monotonic loading. Through the comparative analysis of simulation results, to explore the impact of different steel plate forms on shear capacity and ductility of coupling beams, etc .


2016 ◽  
Vol 118 ◽  
pp. 76-90 ◽  
Author(s):  
Hong-Song Hu ◽  
Jian-Guo Nie ◽  
Yu-Hang Wang

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
W. Y. Lam ◽  
Lingzhi Li ◽  
R. K. L. Su ◽  
H. J. Pam

As a new alternative design, plate-reinforced composite (PRC) coupling beam achieves enhanced strength and ductility by embedding a vertical steel plate into a conventionally reinforced concrete (RC) coupling beam. Based on a nonlinear finite element model developed in the authors’ previous study, a parametric study presented in this paper has been carried out to investigate the influence of several key parameters on the overall performance of PRC coupling beams. The effects of steel plate geometry, span-to-depth ratio of beams, and steel reinforcement ratios at beam spans and in wall regions are quantified. It is found that the anchorage length of the steel plate is primarily controlled by the span-to-depth ratio of the beam. Based on the numerical results, a design curve is proposed for determining the anchorage length of the steel plate. The load-carrying capacity of short PRC coupling beams with high steel ratio is found to be controlled by the steel ratio of wall piers. The maximum shear stress of PRC coupling beams should be limited to 15 MPa.


2014 ◽  
Vol 94 ◽  
pp. 49-63 ◽  
Author(s):  
Jian-Guo Nie ◽  
Hong-Song Hu ◽  
Matthew R. Eatherton

Author(s):  
Tingjin Liu ◽  
Jiandong Lu ◽  
Di Wang ◽  
Hongyuan Liu

AbstractPrefabricated construction is becoming increasingly prevalent, however, it is rarely applied in underground constructions, except for tunnel linings, due to the difficulties that arise in jointing various prefabricated components in underground conditions. To solve the vertical location problem of embedded mechanical couplers during the construction of wall–beam–strut joints for a prefabricated metro station, a new connection using welded steel plates is proposed. In this paper, four full-scale specimens of wall–beam–strut joints connected using welded steel plates and mechanical couplers were experimentally tested under monotonic and low-reversed cyclic loading conditions. The testing results were analysed in terms of the ultimate bearing capacity, failure mode, hysteresis, skeleton curve, stiffness degradation, energy dissipation and strain of the reinforcement bars. Notably, the two kinds of joints had similar ultimate bearing capacities and failure modes, but the crack distributions on the tops of the waler beams were different. For the specimens with the welded steel plate connection, tensile horizontal cracks first appeared on the top surface of the beam, where the welded steel plate was located, and then coalesced gradually; however, this cracking pattern was not observed during the experimental test of the specimens connected with the mechanical couplers. Furthermore, it was determined that the energy dissipation and ductility of the welded steel plate connection were better than those of the mechanical coupler connected joint, because the steel plate could redistribute the internal force in the joint and increase the stiffness. It was concluded that the proposed welded steel plate connection could be more favourable than the mechanical coupler connection in the construction of a prefabricated metro station in Guangzhou. Moreover, the results obtained from these experiments could provide guidelines for the corresponding connections employed in underground-prefabricated structures.


2018 ◽  
Vol 763 ◽  
pp. 18-31 ◽  
Author(s):  
Guo Qiang Li ◽  
Hua Jian Jin ◽  
Meng De Pang ◽  
Yan Wen Li ◽  
Ying Zhi Sun ◽  
...  

Buildings in seismic zones are required to provide proper stiffness and load-bearing capacity to resist frequent earthquakes, and possess proper ductility and energy-dissipating capacity to prevent collapse under rare earthquakes. To meet these requirements, the concept of structural energy-dissipation techniques for the bi-functions of load-bearing and energy dissipating are proposed. A number of structural metal energy-dissipation elements, such as buckling-restrained steel plate shear walls, non-buckling corrugated steel plate shear walls, two-level yielding steel coupling beams and energy-dissipative columns, have been developed. They are designed to provide stiffness/strength to guarantee the operation of buildings under frequent earthquakes, but also dissipate energy to reduce seismic effects to a considerable extent for collapse-prevention of buildings. The experimental and theoretical studies on these structural metal energy-dissipating dampers are presented. The efficiency of these structural dampers for disaster mitigation of buildings against earthquakes are also presented to provide a reference for their practical application.


2016 ◽  
pp. 194-210
Author(s):  
B. Cheng ◽  
◽  
R.K.L. Su ◽  
C. Shi ◽  
C.T. Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document