Experimental and numerical investigations on residual stresses in hot-bent circular steel tube

2019 ◽  
Vol 161 ◽  
pp. 31-46 ◽  
Author(s):  
Qinghua Han ◽  
Zhaolun Han ◽  
Yan Lu
Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1298
Author(s):  
Shuyan Zhang ◽  
Zhuozhi Fan ◽  
Jun Li ◽  
Shuwen Wen ◽  
Sanjooram Paddea ◽  
...  

In this study, a mock-up of a nuclear safe-end dissimilar metal weld (DMW) joint (SA508-3/316L) was manufactured. The manufacturing process involved cladding and buttering of the ferritic steel tube (SA508-3). It was then subjected to a stress relief heat treatment before being girth welded together with the stainless steel tube (316L). The finished mock-up was subsequently machined to its final dimension. The weld residual stresses were thoroughly characterised using neutron diffraction and the contour method. A detailed finite element (FE) modelling exercise was also carried out for the prediction of the weld residual stresses resulting from the manufacturing processes of the DMW joint. Both the experimental and numerical results showed high levels of tensile residual stresses predominantly in the hoop direction of the weld joint in its final machined condition, tending towards the OD surface. The maximum hoop residual stress determined by the contour method was 500 MPa, which compared very well with the FE prediction of 467.7 Mpa. Along the neutron scan line at the OD subsurface across the weld joint, both the contour method and the FE modelling gave maximum hoop residual stress near the weld fusion line on the 316L side at 388.2 and 453.2 Mpa respectively, whereas the neutron diffraction measured a similar value of 480.6 Mpa in the buttering zone near the SA508-3 side. The results of this research thus demonstrated the reasonable consistency of the three techniques employed in revealing the level and distribution of the residual stresses in the DMW joint for nuclear applications.


2008 ◽  
Vol 20 (10) ◽  
pp. 104258 ◽  
Author(s):  
Yu V Taran ◽  
A M Balagurov ◽  
J Schreiber ◽  
U Stuhr

2021 ◽  
Vol 230 ◽  
pp. 111599
Author(s):  
Jiangang Wei ◽  
Zhitao Xie ◽  
Wei Zhang ◽  
Xia Luo ◽  
Yan Yang ◽  
...  

2020 ◽  
Vol 7 ◽  
Author(s):  
Dingyi Xu ◽  
Zongping Chen ◽  
Chunheng Zhou

This study was conducted to experimentally investigate the behavior of recycled concrete-filled circular steel tube (RCFST) columns subjected to cyclic loading. Ten specimens were prepared and tested. Four parameters were used to characterize seismic behavior: the replacement percentage of recycled coarse aggregate, slenderness ratio, axial compression level, and steel ratio. A novel calculation method for the bearing capacity for RCFST columns is established. The failure processes and modes of RCFST columns are found to be similar to normal concrete-filled steel tube columns. Varying the replacement percentage of recycled coarse aggregate has little effect on the hysteresis curves of the RCFST columns. The RCFST columns also show seismic performance similar to that of concrete-filled steel tubes. The displacement ductility of all specimens is larger than 3.0 and the equivalent viscous damping coefficients corresponding to the ultimate load range from 0.305 to 0.460.


Sign in / Sign up

Export Citation Format

Share Document