Increasing gene editing efficiencies in eukaryotic cell lines by selection of appropriate CRISPR-Cas9 reagents

Cytotherapy ◽  
2015 ◽  
Vol 17 (6) ◽  
pp. S53
Author(s):  
Melissa L. Kelley ◽  
Zaklina Strezoska ◽  
Hidevaldo Machado ◽  
Emily Anderson ◽  
Maren Mayer ◽  
...  
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Swati Jivanji ◽  
Chad Harland ◽  
Sally Cole ◽  
Brigid Brophy ◽  
Dorian Garrick ◽  
...  

Abstract Background Animal health and welfare are at the forefront of public concern and the agricultural sector is responding by prioritising the selection of welfare-relevant traits in their breeding schemes. In some cases, welfare-enhancing traits such as horn-status (i.e., polled) or diluted coat colour, which could enhance heat tolerance, may not segregate in breeds of primary interest, highlighting gene-editing tools such as the CRISPR-Cas9 technology as an approach to rapidly introduce variation into these populations. A major limitation preventing the acceptance of CRISPR-Cas9 mediated gene-editing, however, is the potential for off-target mutagenesis, which has raised concerns about the safety and ultimate applicability of this technology. Here, we present a clone-based study design that has allowed a detailed investigation of off-target and de novo mutagenesis in a cattle line bearing edits in the PMEL gene for diluted coat-colour. Results No off-target events were detected from high depth whole genome sequencing performed in precursor cell-lines and resultant calves cloned from those edited and non-edited cell lines. Long molecule sequencing at the edited site and plasmid-specific PCRs did not reveal structural variations and/or plasmid integration events in edited samples. Furthermore, an in-depth analysis of de novo mutations across the edited and non-edited cloned calves revealed that the mutation frequency and spectra were unaffected by editing status. Cells in culture, however, appeared to have a distinct mutation signature where de novo mutations were predominantly C > A mutations, and in cloned calves they were predominantly T > G mutations, deviating from the expected excess of C > T mutations. Conclusions We found no detectable CRISPR-Cas9 associated off-target mutations in the gene-edited cells or calves derived from the gene-edited cell line. Comparison of de novo mutation in two gene-edited calves and three non-edited control calves did not reveal a higher mutation load in any one group, gene-edited or control, beyond those anticipated from spontaneous mutagenesis. Cell culture and somatic cell nuclear transfer cloning processes contributed the major source of contrast in mutational profile between samples.


2021 ◽  
Author(s):  
Swati Jivanji ◽  
Chad Harland ◽  
Sally Cole ◽  
Brigid Brophy ◽  
Dorian Garrick ◽  
...  

AbstractAnimal health and welfare are at the forefront of public concern and the agricultural sector is responding by prioritising the selection of welfare-relevant traits in their breeding schemes. In some cases, welfare-enhancing traits such as horn-status (i.e., polled) or diluted coat colour, which could enhance heat tolerance, may not segregate in breeds of primary interest, highlighting gene-editing tools such as the CRISPR-Cas9 technology as an approach to rapidly introduce variation into these populations. A major limitation preventing the acceptance of CRISPR-Cas9 mediated gene-editing, however, is the potential for off-target mutagenesis, which has raised concerns about the safety and ultimate applicability of this technology. Here, we present a clone-based study design that has allowed a detailed investigation of off-target and de novo mutagenesis in a cattle line bearing edits in the PMEL gene for diluted coat-colour. No off-target events were detected from high depth whole genome sequencing performed in precursor cell-lines and resultant calves cloned from those edited and non-edited cell lines. Long molecule sequencing at the edited site and plasmid-specific PCRs did not reveal structural variations and/or plasmid integration events in edited samples. Furthermore, an in-depth analysis of de novo mutations across samples revealed that the mutation frequency and spectra were unaffected by editing status. Cells in culture, however, had a distinct mutation signature where de novo mutations were predominantly C>A mutations, and in cloned calves they were predominantly T>G mutations, deviating from the expected excess of C>T mutations. We conclude that the gene-edited cells and calves in this study did not present a higher mutation load than unedited controls. Cell culture and somatic cell nuclear transfer cloning processes contributed the major source of contrast in mutational profile between samples.


BIO-PROTOCOL ◽  
2014 ◽  
Vol 4 (8) ◽  
Author(s):  
Amit Dey ◽  
Abha Bhagat ◽  
Rukhsana Chowdhury

2011 ◽  
Vol 208 (6) ◽  
pp. 1345-1350 ◽  
Author(s):  
Ulrich Bohrn ◽  
Evamaria Stütz ◽  
Maximilian Fleischer ◽  
Michael J. Schöning ◽  
Patrick Wagner

1993 ◽  
Vol 264 (1) ◽  
pp. C93-C102 ◽  
Author(s):  
J. S. Trausch ◽  
S. J. Grenfell ◽  
P. M. Handley-Gearhart ◽  
A. Ciechanover ◽  
A. L. Schwartz

Ubiquitin, a 76-amino acid protein, is covalently attached to abnormal and short-lived proteins, thus marking them for ATP-dependent proteolysis in eukaryotic cells. Ubiquitin is found within the cytoplasm, nucleus, microvilli, autophagic vacuoles, and lysosomes. The ubiquitin-activating enzyme, E1, catalyzes the first step in ubiquitin conjugation. To date, very little is known about the subcellular distribution of this enzyme. We have utilized immunofluorescence and immunoblotting to examine the cellular distribution of E1 in several eukaryotic cell lines, including HeLa, smooth muscle A7r5, choriocarcinoma BeWo, Pt K1, and Chinese hamster ovary (CHO) E36. E1 was identified in both cytoplasmic and nuclear compartments in all cell lines examined. However, the relative abundance within these compartments differed markedly between the cell lines. Even within a single cell line, nuclear distribution was not uniform, and certain cells demonstrated an absence of nuclear staining. E1 resides predominantly within the nucleus in BeWo. In contrast, its distribution in CHO and Pt K1 cells is mainly cytoplasmic. Within the cytoplasm, three pools of E1 were identified by double-label immunofluorescence. The first of these colocalized with phalloidin, indicating association of E1 with actin filaments. A second cytoplasmic pool colocalized with tubulin and was predominantly perinuclear in its distribution. The third pool associated with intermediate filaments. This suggests that E1 is associated with all three components of the cytoskeleton. The distribution of E1 was unaltered in a mutant line of CHO E36 designated ts20, in which the E1 can be thermally inactivated. The variable distribution of E1 among cell lines, including its apparent cytoskeletal association, suggests pleiotropic functions of this enzyme and the ubiquitin-conjugating system.


2017 ◽  
Vol 13 (7S_Part_6) ◽  
pp. P322-P322 ◽  
Author(s):  
Yau Mun Lim ◽  
Hannah Rutter ◽  
Richard Killick ◽  
Angela Hodges

1999 ◽  
Vol 24 (1) ◽  
pp. 13-16 ◽  
Author(s):  
Mamoru HORIKOSHI ◽  
Takashi HIROOKA
Keyword(s):  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3758-3758
Author(s):  
Jianping Li ◽  
Catalina Troche ◽  
Julia Hlavka Zhang ◽  
Jonathan Shrimp ◽  
Jacob S. Roth ◽  
...  

Despite improvements in chemotherapy that have increased the 5-year survival rates of pediatric ALL to close to 90%, 15-20% of patients may relapse with a very poor prognosis. Pediatric ALL patients, particularly those in relapse can harbor a specific point mutation (E1099K) in NSD2 (nuclear receptor binding SET domain protein 2) gene, also known as MMSET or WHSC1, which encodes a histone methyl transferase specific for H3K36me2. To understand the biology of mutant NSD2, we used CRISPR-Cas9 gene editing to disrupt the NSD2E1099K mutant allele in B-ALL cell lines (RCH-ACV and SEM) and T-ALL cell line (RPMI-8402) or insert the E1099K mutation into the NSD2WT T-ALL cell line (CEM) and B-ALL cell line (697). Cell lines in which the NSD2E1099K mutant allele is present display increased global levels of H3K36me2 and decreased H3K27me3. NSD2E1099Kcells demonstrate enhanced cell growth, colony formation and migration. NSD2E1099K mutant cell lines assayed by RNA-Seq exhibit an aberrant gene signature, mostly representing gene activation, with activation of signaling pathways, genes implicated in the epithelial mesenchymal transition and prominent expression of neural genes not generally found in hematopoietic tissues. Accordingly, NSD2E1099K cell lines showed prominent tropism to the central neural system in xenografts. To understand why this NSD2 mutations are identified prominently in children who relapse early from therapy for ALL, we performed high-throughput screening in our isogenic cell lines with the National Center for Advancing Translation Science (NCATS) Pharmaceutical Collection and other annotated chemical libraries and found that NSD2E1099K cells are resistant to glucocorticoids (GC) but not to other chemotherapeutic agents used to treat ALL such as vincristine, doxorubicin, cyclophosphamide, methotrexate, and 6-mercaptopurine. Accordingly, patient-derived-xenograft ALL cells with NSD2E1099K mutation were resistant to GC treatment. Reversion of NSD2E1099K mutation to NSD2WT restored GC sensitivity to both B- and T-ALL cell lines, which was accompanied by cell cycle arrest in G1 and induced-apoptosis. Furthermore, knock-in of the NSD2E1099K mutation conferred GC resistance to ALL cell lines by triggering cell cycle progression, proliferation and anti-apoptotic processes. Mice with NSD2E1099K xenografts were completely resistant to GC treatment while treatment of mice injected with isogenic NSD2WT cells led to significant tumor reduction and survival benefit. To illustrate these biological phenotypes and understand the molecular mechanism of GC resistance driven by NSD2E1099Kmutation, we investigated the GC-induced transcriptome, GC receptor (GR) binding sites and related epigenetic changes in isogenic ALL cell lines in response to GC treatment. RNA-Seq showed that GC transcriptional response was almost completely blocked in NSD2E1099K cells, especially in T-ALL cell lines, correlating with their lack of biological response. GC treatment activated apoptotic pathways and downregulated cell cycle and DNA repair pathways only in NSD2WT cells. The critical pro-apoptotic regulators BIM and BMF failed to be activated by GC in NSD2E1099K cells but were prominently activated when the NSD2 mutation was removed. Chromatin immunoprecipitation sequencing (ChIP-Seq) showed that, the NSD2E1099K mutation blocked the ability of GR and CTCF to bind most GC response elements (GREs) such as those within BIM and BMF. While GR binding in NSD2WT cells was accompanied by increased H3K27 acetylation and gene expression, this failed to occur in NSD2 mutant cells. Furthermore, we found that GR RNA and protein levels were repressed in ALL cells expressing NSD2E1099K and GC failed to induce GR expression in these cells. Paradoxically, while H3K27me3 levels were generally decreased in NSD2E1099K cells, we saw increased levels of H3K27me3 at the GRE within the GR gene body where GR itself and CTCF normally bind, suggesting a novel role for the polycomb repressive complex 2 and EZH2 inhibitors for this form of GC resistance. In conclusion, these studies demonstrate that NSD2E1099K mutation may play an important role in treatment failure of pediatric ALL relapse by interfering with the GR expression and its ability to bind and activate key target genes. Gene editing screens are being performed to understand how to overcome this resistance. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Dashan Sun

CRISPR system is a powerful gene editing tool which has already been reported to address a variety of gene relevant diseases in different cell lines. However, off-target effect and immune response caused by Cas9 remain two fundamental problems. In our work, time-delayed safety switches are designed based on either artificial ultrasensitivity transmission module or intrinsic time delay in biomolecular activities. By addressing gene therapy efficiency, off-target effect, immune response and drug accumulation, we hope our safety switches may offer inspiration in realizing safe and efficient gene therapy in humans.


Sign in / Sign up

Export Citation Format

Share Document