Comparative insight into expression of recombinant human VEGF111b, a newly identified anti-angiogenic isoform, in eukaryotic cell lines

Gene ◽  
2014 ◽  
Vol 553 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Fariba Dehghanian ◽  
Zohreh Hojati
BIO-PROTOCOL ◽  
2014 ◽  
Vol 4 (8) ◽  
Author(s):  
Amit Dey ◽  
Abha Bhagat ◽  
Rukhsana Chowdhury

2021 ◽  
Vol 22 (13) ◽  
pp. 6727
Author(s):  
Svenja Mergener ◽  
Jens T. Siveke ◽  
Samuel Peña-Llopis

The use of MEK inhibitors in the therapy of uveal melanoma (UM) has been investigated widely but has failed to show benefits in clinical trials due to fast acquisition of resistance. In this study, we investigated a variety of therapeutic compounds in primary-derived uveal melanoma cell lines and found monosomy of chromosome 3 (M3) and mutations in BAP1 to be associated with higher resistance to MEK inhibition. However, reconstitution of BAP1 in a BAP1-deficient UM cell line was unable to restore sensitivity to MEK inhibition. We then compared UM tumors from The Cancer Genome Atlas (TCGA) with mutations in BAP1 with tumors with wild-type BAP1. Principal component analysis (PCA) clearly differentiated both groups of tumors, which displayed disparate overall and progression-free survival data. Further analysis provided insight into differential expression of genes involved in signaling pathways, suggesting that the downregulation of the eukaryotic translation initiation factor 2A (EIF2A) observed in UM tumors with BAP1 mutations and M3 UM cell lines might lead to a decrease in ribosome biogenesis while inducing an adaptive response to stress. Taken together, our study links loss of chromosome 3 with decreased sensitivity to MEK inhibition and gives insight into possible related mechanisms, whose understanding is fundamental to overcome resistance in this aggressive tumor.


2011 ◽  
Vol 208 (6) ◽  
pp. 1345-1350 ◽  
Author(s):  
Ulrich Bohrn ◽  
Evamaria Stütz ◽  
Maximilian Fleischer ◽  
Michael J. Schöning ◽  
Patrick Wagner

1993 ◽  
Vol 264 (1) ◽  
pp. C93-C102 ◽  
Author(s):  
J. S. Trausch ◽  
S. J. Grenfell ◽  
P. M. Handley-Gearhart ◽  
A. Ciechanover ◽  
A. L. Schwartz

Ubiquitin, a 76-amino acid protein, is covalently attached to abnormal and short-lived proteins, thus marking them for ATP-dependent proteolysis in eukaryotic cells. Ubiquitin is found within the cytoplasm, nucleus, microvilli, autophagic vacuoles, and lysosomes. The ubiquitin-activating enzyme, E1, catalyzes the first step in ubiquitin conjugation. To date, very little is known about the subcellular distribution of this enzyme. We have utilized immunofluorescence and immunoblotting to examine the cellular distribution of E1 in several eukaryotic cell lines, including HeLa, smooth muscle A7r5, choriocarcinoma BeWo, Pt K1, and Chinese hamster ovary (CHO) E36. E1 was identified in both cytoplasmic and nuclear compartments in all cell lines examined. However, the relative abundance within these compartments differed markedly between the cell lines. Even within a single cell line, nuclear distribution was not uniform, and certain cells demonstrated an absence of nuclear staining. E1 resides predominantly within the nucleus in BeWo. In contrast, its distribution in CHO and Pt K1 cells is mainly cytoplasmic. Within the cytoplasm, three pools of E1 were identified by double-label immunofluorescence. The first of these colocalized with phalloidin, indicating association of E1 with actin filaments. A second cytoplasmic pool colocalized with tubulin and was predominantly perinuclear in its distribution. The third pool associated with intermediate filaments. This suggests that E1 is associated with all three components of the cytoskeleton. The distribution of E1 was unaltered in a mutant line of CHO E36 designated ts20, in which the E1 can be thermally inactivated. The variable distribution of E1 among cell lines, including its apparent cytoskeletal association, suggests pleiotropic functions of this enzyme and the ubiquitin-conjugating system.


2016 ◽  
Author(s):  
Maureen M. Mundia ◽  
Alissa C. Magwood ◽  
Mark D. Baker

ABSTRACTIn this study, we utilized mouse hybridoma cell lines stably expressing ectopic wild-type Rad51, or the Rad51-K133A and Rad51-K133R catalytic mutants deficient in ATP binding and ATP hydrolysis, respectively, to investigate effects on the Rad51 nucleoprotein filament in vivo. Immunoprecipitation studies reveal interactions between ectopic wild-type Rad51, Rad51-K133A and Rad51-K133R and endogenous Rad51, Brca2 and p53 proteins. Importantly, the expression of Rad51-K133A and Rad51-K133R catalytic mutants (but not wild-type Rad51) targets endogenous Rad51, Brca2 and p53 proteins for proteasome-mediated degradation. Expression of Rad51-K133R significantly reduces nascent DNA synthesis (3’ polymerization) during homologous recombination (HR), but the effects of Rad51-K133A on 3’ polymerization are considerably more severe. Provision of additional wild-type Rad51 in cell lines expressing Rad51-K133A or Rad51-K133R does not restore diminished levels of endogenous Brca2, Rad51 or p53, nor restore the deficiency in 3’ polymerization. Cells expressing Rad51-K133A are also significantly reduced in their capacity to drive strand exchange through regions of heterology. Our results reveal an interesting mechanistic dichotomy in the way mutant Rad51-K133A and Rad51-K133R proteins influence 3’ polymerization and provide novel insight into the mechanism of their dominant-negative phenotypes.


2019 ◽  
Vol 88 (1) ◽  
pp. 41-56 ◽  
Author(s):  
Győző L. Kaján ◽  
Andor Doszpoly ◽  
Zoltán László Tarján ◽  
Márton Z. Vidovszky ◽  
Tibor Papp

Abstract Viruses have been infecting their host cells since the dawn of life, and this extremely long-term coevolution gave rise to some surprising consequences for the entire tree of life. It is hypothesised that viruses might have contributed to the formation of the first cellular life form, or that even the eukaryotic cell nucleus originates from an infection by a coated virus. The continuous struggle between viruses and their hosts to maintain at least a constant fitness level led to the development of an unceasing arms race, where weapons are often shuttled between the participants. In this literature review we try to give a short insight into some general consequences or traits of virus–host coevolution, and after this we zoom in to the viral clades of adenoviruses, herpesviruses, nucleo-cytoplasmic large DNA viruses, polyomaviruses and, finally, circoviruses.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2772 ◽  
Author(s):  
Balkrishna ◽  
Das ◽  
Pokhrel ◽  
Joshi ◽  
Laxmi ◽  
...  

Colchicine was extracted from Gloriosa superba seeds using the Super Critical Fluid (CO2) Extraction (SCFE) technology. The seeds were purified upto 99.82% using column chromatography. Colchicine affinity was further investigated for anticancer activity in six human cancer cell lines, i.e., A549, MCF-7, MDA-MB231, PANC-1, HCT116, and SiHa. Purified colchicine showed the least cell cytotoxicity and antiproliferation and caused no G2/M arrest at clinically acceptable concentrations. Mitotic arrest was observed in only A549 and MDA-MB231 cell lines at 60nM concentration. Our finding indicated the possible use of colchicine at a clinically acceptable dose and provided insight into the science behind microtubule destabilization. However, more studies need to be conducted beforethese findings could be established.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1288 ◽  
Author(s):  
Inés García-Rodríguez ◽  
Adithya Sridhar ◽  
Dasja Pajkrt ◽  
Katja C. Wolthers

The knowledge about enteric viral infection has vastly increased over the last eight years due to the development of intestinal organoids and enteroids that suppose a step forward from conventional studies using cell lines. Intestinal organoids and enteroids are three-dimensional (3D) models that closely mimic intestinal cellular heterogeneity and organization. The barrier function within these models has been adapted to facilitate viral studies. In this review, several adaptations (such as organoid-derived two-dimensional (2D) monolayers) and original intestinal 3D models are discussed. The specific advantages and applications, as well as improvements of each model are analyzed and an insight into the possible path for the field is given.


Sign in / Sign up

Export Citation Format

Share Document