Cell division cycle associated gene 1 as a new therapeutic target for melanoma

2016 ◽  
Vol 84 (1) ◽  
pp. e175
Author(s):  
Aki Tokuzumi ◽  
Satoshi Fukushima ◽  
Azusa Miyashita ◽  
Junji Yamashita ◽  
Satoshi Nakahara ◽  
...  
2016 ◽  
Vol 49 (4) ◽  
pp. 1385-1393 ◽  
Author(s):  
Phung Manh Thang ◽  
Atsushi Takano ◽  
Yoshihiro Yoshitake ◽  
Masanori Shinohara ◽  
Yoshinori Murakami ◽  
...  

2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Peilin Shen ◽  
Xuejun He ◽  
Lin Lan ◽  
Yingkai Hong ◽  
Mingen Lin

Abstract Purpose: As bladder cancer (BC) is very heterogeneous and complicated in the genetic level, exploring genes to serve as biomarkers and therapeutic targets is practical. Materials and methods: We searched Gene Expression Omnibus (GEO) and downloaded the eligible microarray datasets. After intersection analysis for identified differentially expressed genes (DEGs) of included datasets, overlapped DEGs were identified and subsequently analyzed with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Protein–Protein Interaction (PPI) and hub genes identification. Hub genes were further analyzed with mRNA expression comparation in Oncomine and Gene Expression Profiling Interactive Analysis (GEPIA) database, proteomics-based validation in The Human Protein Atlas (THPA) and survival analysis in GEO and Oncolnc database. Results: We analyzed five eligible GEO datasets and identified 76 overlapped DEGs mapped into PPI network with 459 edges which were mainly enriched in cell cycle pathway and related terms in GO and KEGG analysis. Among five identified hub genes, which are Cyclin-Dependent Kinase 1 (CDK1), Ubiquitin-Conjugating Enzyme E2 C (UBE2C), Cell Division Cycle 20 (CDC20), Microtubule Nucleation Factor (TPX2) and Cell Division Cycle Associated 8 (CDCA8); CDC20 and CDCA8 were confirmed as significant in mRNA expression comparation and proteomics-based validation. However, only CDC20 was considered prognostically significant in both GEO and Oncolnc database. Conclusions: CDC20 and CDCA8 were identified as candidate diagnostic biomarkers for BC in the present study; however, only CDC20 was validated as prognostically valuable and may possibly serve as a candidate prognostic biomarker and potential therapeutic target. Still, further validation studies are essential and indispensable.


2001 ◽  
Vol 120 (5) ◽  
pp. A501-A501
Author(s):  
U HAUGWITZ ◽  
M WIEDMANN ◽  
K SPIESBACH ◽  
K ENGELAND ◽  
J MOSSNER

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 458
Author(s):  
Emmanuel Broni ◽  
Samuel K. Kwofie ◽  
Seth O. Asiedu ◽  
Whelton A. Miller ◽  
Michael D. Wilson

The huge burden of leishmaniasis caused by the trypanosomatid protozoan parasite Leishmania is well known. This illness was included in the list of neglected tropical diseases targeted for elimination by the World Health Organization. However, the increasing evidence of resistance to existing antimonial drugs has made the eradication of the disease difficult to achieve, thus warranting the search for new drug targets. We report here studies that used computational methods to identify inhibitors of receptors from natural products. The cell division cycle-2-related kinase 12 (CRK12) receptor is a plausible drug target against Leishmania donovani. This study modelled the 3D molecular structure of the L. donovani CRK12 (LdCRK12) and screened for small molecules with potential inhibitory activity from African flora. An integrated library of 7722 African natural product-derived compounds and known inhibitors were screened against the LdCRK12 using AutoDock Vina after performing energy minimization with GROMACS 2018. Four natural products, namely sesamin (NANPDB1649), methyl ellagic acid (NANPDB1406), stylopine (NANPDB2581), and sennecicannabine (NANPDB6446) were found to be potential LdCRK12 inhibitory molecules. The molecular docking studies revealed two compounds NANPDB1406 and NANPDB2581 with binding affinities of −9.5 and −9.2 kcal/mol, respectively, against LdCRK12 which were higher than those of the known inhibitors and drugs, including GSK3186899, amphotericin B, miltefosine, and paromomycin. All the four compounds were predicted to have inhibitory constant (Ki) values ranging from 0.108 to 0.587 μM. NANPDB2581, NANPDB1649 and NANPDB1406 were also predicted as antileishmanial with Pa and Pi values of 0.415 and 0.043, 0.391 and 0.052, and 0.351 and 0.071, respectively. Molecular dynamics simulations coupled with molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) computations reinforced their good binding mechanisms. Most compounds were observed to bind in the ATP binding pocket of the kinase domain. Lys488 was predicted as a key residue critical for ligand binding in the ATP binding pocket of the LdCRK12. The molecules were pharmacologically profiled as druglike with inconsequential toxicity. The identified molecules have scaffolds that could form the backbone for fragment-based drug design of novel leishmanicides but warrant further studies to evaluate their therapeutic potential.


2013 ◽  
Vol 87 (24) ◽  
pp. 13775-13784 ◽  
Author(s):  
O. Perwitasari ◽  
A. C. Torrecilhas ◽  
X. Yan ◽  
S. Johnson ◽  
C. White ◽  
...  

2002 ◽  
Vol 38 (17) ◽  
pp. 2290-2299 ◽  
Author(s):  
A Moretti ◽  
A Borriello ◽  
F Monno ◽  
M Criscuolo ◽  
A Rosolen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document