The relationship between muscle activation and shear elastic modulus of the sternocleidomastoid muscle during 3-D torque production

2020 ◽  
Vol 55 ◽  
pp. 102480
Author(s):  
Whitney L. Wolff ◽  
Joshua M. Leonardis ◽  
David B. Lipps
Author(s):  
Kristen M. Farris ◽  
Regan E. Fehrenbacher ◽  
Erin L. Hayes ◽  
Ryan R. McEvoy ◽  
Alex P. Smith ◽  
...  

2018 ◽  
Vol 02 (05) ◽  
pp. E142-E147 ◽  
Author(s):  
Masatoshi Nakamura ◽  
Ryo Hirabayashi ◽  
Shuhei Ohya ◽  
Takafumi Aoki ◽  
Daichi Suzuki ◽  
...  

AbstractThis study aimed to clarify the acute effect of static stretching (SS) with superficial cooling on dorsiflexion range of motion (DF ROM) and muscle stiffness. Sixteen healthy males participated in the cooling condition and a control condition in a random order. The DF ROM and the shear elastic modulus of medial gastrocnemius (MG) in the dominant leg were measured during passive dorsiflexion. All measurements were performed prior to (PRE) and immediately after 20 min of cooling or rested for 20 min (POST), followed by 2 min SS (POST SS). In cooling condition, DF ROM at POST and POST SS were significantly higher than that at PRE and DF ROM at POST SS was significantly higher than that at POST. In addition, the shear elastic modulus at POST was significantly higher than that at PRE and the shear elastic modulus at POST SS was significantly lower than those at PRE and POST. However, there were no significant differences in the percentage changes between PRE and POST SS between the cooling and control conditions. Our results showed that effects of SS with superficial cooling on increases in ROM and decrease in muscle stiffness were no more beneficial than those of SS alone.


2000 ◽  
Vol 83 (5) ◽  
pp. 2814-2824 ◽  
Author(s):  
Tania Lamb ◽  
Jaynie F. Yang

This study examined the idea of whether the same central pattern generator (CPG) for locomotion can control different directions of walking in humans. Fifty-two infants, aged 2–11 mo, were tested. Infants were supported to walk on a treadmill at a variety of speeds. If forward stepping was elicited, stepping in the other directions (primarily sideways and backward) was attempted. The orientation of the infant on the treadmill belt determined the direction of stepping. In some infants, we also attempted to obtain a smooth transition from one direction to another by gradually changing the orientation of the infant during a stepping sequence. Limb segment motion and surface electromyography from the muscles of the lower limb were recorded. Most infants who showed sustained forward walking also could walk in all other directions. Thirty-three of 34 infants tested could step sideways. The success of eliciting backward stepping was 69%. Most of the infants who did not meet our backward stepping criteria did, however, make stepping movements. The different directions of stepping had similar responses to changes in treadmill speed. The relationship between stance and swing phase durations and cycle duration were the same regardless of the direction of stepping across a range of speeds. Some differences were noted in the muscle activation patterns during different directions of walking. For example, the hamstrings were much more active during the swing phase of backward walking compared with forward walking. The quadriceps was more active in the trailing leg during sideways walking. In some infants, we were able to elicit stepping along a continuum of directions. We found no discrete differences in either the electromyographic patterns or the temporal parameters of stepping as the direction of stepping was gradually changed. The results support the idea that the same locomotor CPG controls different directions of stepping in human infants. The fact that most infants were able to step in all directions, the similarity in the response to speed changes, and the absence of any discrete changes as the direction of stepping was changed gradually are all consistent with this hypothesis.


2021 ◽  
Vol 13 (3) ◽  
pp. 469-476
Author(s):  
Sebastien Durand ◽  
Wassim Raffoul ◽  
Thierry Christen ◽  
Nadine Pedrazzi

Background: Ulnar nerve compression at the elbow level is the second-most common entrapment neuropathy. The aim of this study was to use shear-wave elastography for the quantification of ulnar nerve elasticity in patients after ulnar nerve decompression with anterior transposition and in the contralateral non-operative side. Method: Eleven patients with confirmed diagnosis and ulnar nerve decompression with anterior transposition were included and examinations were performed on an AixplorerTM ultrasound system (Supersonic Imagine, Aix-en-Provence, France). Results: We observed significant differences at 0-degree (p < 0.001), 45-degree (p < 0.05), 90-degree (p < 0.01) and 120-degree (p < 0.001) elbow flexion in the shear elastic modulus of the ulnar nerve in the operative and non-operative sides. There were no statistically significant differences between the elasticity values of the ulnar nerve after transposition at 0-degree elbow flexion and in the non-operative side at 120-degree elbow flexion (p = 0.39), or in the ulnar nerve after transposition at 120-degree elbow flexion and in the non-operative side at 0-degree elbow flexion (p = 0.09). Conclusion: Shear-wave elastography has the potential to be used postoperatively as a method for assessing nerve tension noninvasively by the estimation of mechanical properties, such as the shear elastic modulus.


2012 ◽  
Vol 198-199 ◽  
pp. 193-196
Author(s):  
De Jun Ma ◽  
Jun Hong Guo ◽  
Wei Chen ◽  
Zhong Kang Song

Based on dimensional analysis, finite element numerical calculation is undertaken on elastic–plastic solids to investigate the relationship between instrumented indentation nominal hardness Hn and reduced elastic modulus Er for three different apex angle indenters. The half-included angles of axisymetric conical indenter models are 62.9°, 70.3°and 85.566° which are corresponding to the real indenters of cube corner indenter with 60° face angle, Berkovich indenter with 65.27° face angle and cube corner indenter with 85° face angle, respectively. The relationship between a nominal hardness/reduced elastic modulus (Hn/Er) and elastic work/total indentation work (We/Wt) is established with a sixth-order polynomial form for each apex angle indenter. For rigid indenter of instrumented indentation model, reduced elastic modulus Er=1/[(1+v2)/E], where E and v are elastic modulus and Poisson’s ratio of the indented material. Therefore, Hn/Er–We/Wt relationship can be used to give estimates of E. Accuracy estimation for the each relationship of each half-included angle indenter shows that the large half-included angle of 85.566° gives better Er measurement error of +11.56% for a low yield strength material(e.g., materials for which σy=100MPa, n=0 and E=200GPa), while for the smaller half-included angle of 62.9° or 70.3° indenter, the measurement error is > ±12.74%. The research in this paper confirms that Hn/Er–We/Wt relationship of large apex angle indenter such as 85.566° half-included angle is recommended to be used for estimating the elastic modulus E of indented material.


2017 ◽  
Vol 26 (7) ◽  
pp. 1159-1165 ◽  
Author(s):  
Jun Umehara ◽  
Masatoshi Nakamura ◽  
Kosuke Fujita ◽  
Ken Kusano ◽  
Satoru Nishishita ◽  
...  

2020 ◽  
Vol 29 (5) ◽  
pp. 578-582
Author(s):  
Masatoshi Nakamura ◽  
Shigeru Sato ◽  
Ryosuke Kiyono ◽  
Nobushige Takahashi ◽  
Tomoichi Yoshida

Context: In clinical and sports settings, static stretching (SS) is usually performed to increase range of motion (ROM) and decrease passive muscle stiffness. Recently, the shear elastic modulus was measured by ultrasonic shear wave elastography as an index of muscle stiffness. Previous studies reported that the shear elastic modulus measured by ultrasound shear wave elastography decreased after SS, and the effects of SS on shear elastic modulus were likely affected by rest duration between sets of SS. Objective: To investigate the acute effects of SS with different rest durations on ROM and shear elastic modulus of gastrocnemius and to clarify whether the rest duration between sets of SS decreases the shear elastic modulus. Design: A randomized, repeated-measures experimental design. Setting: University laboratory. Participants: Sixteen healthy males volunteered to participate in the study (age 21.3 [0.8] y; height 171.8 [5.1] cm; weight 63.1 [4.5] kg). Main Outcome Measures: Each participant underwent 3 different rest interval durations during SS (ie, long rest duration: 90 s; normal rest duration: 30 s; and short rest duration: 10 s). This SS technique was repeated 10 times, thus lasting a total of 300 seconds with different rest durations in each protocol. The dorsiflexion ROM and shear elastic modulus were measured before and after SS. Results: Our results revealed that dorsiflexion ROM and shear elastic modulus were changed after 300-second SS; however, no effects of the rest duration between sets of SS were observed. Conclusions: In terms of decreasing the shear elastic modulus, clinicians and coaches should not focus on the rest duration when SS intervention is performed.


Sign in / Sign up

Export Citation Format

Share Document