cube corner
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 5)

H-INDEX

17
(FIVE YEARS 0)



2021 ◽  
pp. 1-13
Author(s):  
Erica Esatyana ◽  
Mehdi Alipour ◽  
A. Sakhaee-Pour

Summary Shale, which has pores as small as 10 nm, is economically viable for hydrocarbon recovery when it is fractured. Although the fracture toughness dictates the required energy for the improvement, the existing techniques are not suitable for characterization at scales smaller than 1 cm. Developing practical methods for characterization is crucial because fractures can contribute to an accessible pore volume at different scales. This study proposes a conceptual model to characterize the anisotropic fracture toughness of shale using nanoindentations on a sub-1-cm scale. The conceptual model reveals the complexities of characterizing shales and explains why induced fractures differ from those observed in more-homogeneous media, such as fused silica. Samples from the Wolfcamp Formation were tested using Berkovich and cube-corner tips, and the interpreted fracture toughness values are promising. The conceptual model is the first application of the effective-medium theory for fracture toughness characterization using nanoindentation. In addition, it can quantify fracture toughness variations when using small samples, such as drill cuttings.



2021 ◽  
Author(s):  
Olivier Dedry ◽  
Chantal Bouffioux ◽  
Hoang Son Tran ◽  
Juan Guillermo Santos Macías ◽  
Anne Marie Habraken ◽  
...  

Laser powder bed fusion (LPBF) is an additive manufacturing technique that is widely used to produce AlSi10Mg parts with a good strength-to-weight ratio and a very fine microstructure thanks to high cooling rates. However, to obtain better mechanical properties, a good ductility and higher fatigue resistance, post-treatments have to be performed. In this work, friction stir processing, a thermomechanical post-treatment, is applied on an as-built plate of 5 mm of thickness. This post-treatment leads to a decrease of the percentage of porosities and to modification of the microstructure: globularized Si-rich particles are surrounded by the α-Al phase. The method presented uses nanoindentation to determine the behavior of the different phases present in the material for future numerical simulations and a better understanding of the relation between microstructure and fatigue strength. The Bucaille method [1] is used to determine the links between indentation curves and elastoplastic parameters. Three different pyramidal indenters are used: Berkovich, cube corner and an indenter with a centerline-to-face angle of 50 degrees. From the loading / unloading curves and after post-processing, the Young's modulus, the representative strain and the associated stress are determined. With the three different indenters and their three true stress/true strain points, a good description of the elastoplastic behavior can be defined.



Author(s):  
Christophe Martinez ◽  
Yann Lee ◽  
Frederic Sermet ◽  
Marianne Consonni ◽  
Bernard Aventurier


2020 ◽  
Vol 12 (5) ◽  
Author(s):  
Rami Alfattani ◽  
Craig Lusk

Abstract This paper presents a new design concept for a morphing triangle-shaped compliant mechanism. The novel design is a bistable mechanism that has one changeable side. These morphing triangles may be arrayed to create shape-morphing structures. The mechanism design was based on a six-bar dwell mechanism that can fit in a triangle shape and has stable positions at the motion-limit (dead-center) positions. An example of the triangle-shaped compliant mechanism was designed and prototyped: an isosceles triangle with a vertex that changes from 120 deg to 90 deg and vice versa. Three of these in the 120-deg configuration lie flat and when actuated to the 90-deg configuration become a cube corner. This design may be of use for folding and packaging assistance. The mechanism was designed using geometric constraint programming. Force and potential energy analyses characterize the triangle mechanism’s stability. Because of its dead-center motion limits, the vertex angle of the triangle cannot be extended past the range of 90–120 deg, in spite of the mechanism’s compliant joints. Furthermore, because it is a dwell mechanism, the vertex angle is almost immobile near its stable configurations, although other links in the mechanism move. This makes the stable positions of the vertex angle robust against stress relaxation and manufacturing errors. We believe this is the first demonstration of this kind of robustness in bistable mechanisms.



2020 ◽  
Vol 186 ◽  
pp. 108311 ◽  
Author(s):  
Sebastian Bruns ◽  
Laszlo Petho ◽  
Christian Minnert ◽  
Johann Michler ◽  
Karsten Durst


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ghada Dushaq ◽  
Mahmoud Rasras

Abstract Low-dimensional semiconductor structurers formed on a substrate surface at pre-defined locations and with nano-precision placement is of vital interest. The potential of tailoring their electrical and optical properties will revolutionize the next generation of optoelectronic devices. Traditionally, highly aligned self-assembly of semiconductors relies on Stranski- Krastanov growth mode. In this work, we demonstrate a pathway towards ordered configuration of Ge islands on low lattice mismatch GaAs (110) substrate patterned using depth-controlled nanoindentation. Diamond probe tips with different geometries are used to nano-mechanically stamp the surface of GaAs (110). This creates nanoscale volumes of dislocation-mediated deformation which acts to bias nucleation. Results show that nanostamped GaAs exhibits selective-nucleation of Ge at the indent sites. Ge islands formed on a surface patterned using cube corner tip have height of ~10 nm and lateral size of ~225 nm. Larger islands are formed by using Vickers and Berkovich diamond tips (~400 nm). The strain state of the patterned structures is characterized by micro-Raman spectroscopy. A strain value up to 2% for all tip geometries has been obtained. Additionally, strong room temperature photoluminescence (PL) emission is observed around 1.9 µm (650 meV). The observed strain-induced enhancement in the light-emission efficiency is attributed to direct conduction to heavy-hole (cΓ-HH) and conduction to light-hole (cΓ-LH) transitions. The inherent simplicity of the proposed method offers an attractive technique to manufacture semiconductor quantum dot structures for future electronic and photonic applications.



Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 906 ◽  
Author(s):  
Roland Mežibrický ◽  
Tamás Csanádi ◽  
Gerlinde Habler ◽  
Mária Fröhlichová ◽  
Ján Dusza ◽  
...  

Due to the gradual shift to less rich iron ores, the alumina content in the raw materials used for iron-making is progressively increasing, affecting the mineralogy and the properties of iron ore sinters. In this context, the effect of Al content on the mechanical properties of calcium aluminosilicoferrites Ca2(Ca,Mg,Fe)6(Fe,Si,Al)6O20 (SFCA), which is the most important bonding phase in iron ore sinters, is of particular interest. In this study, high-alumina calcium aluminosilicoferrites were synthesized and their mechanical properties were determined by nanoindentation using a cube-corner indenter. For synthesis, different raw materials were taken as proxies for the adhering layer in a sinter granule. Three mixtures were prepared, high-iron, high-silica, and high-alumina and heated in an alumina crucible, which was used to simulate the high-alumina nucleus in a granule. The different raw materials used for synthesis had only minor influence on the compositions of the synthesized ferrites. All ferrites showed similar mechanical behavior during indentation, indicating that neither the chemical nor the mechanical properties were affected by the different compositions of the adhering layer, when the sinter granule is dominated by a high-alumina nucleus. The crystallographic orientation of the tested grains had only minor influence on the results of the nanoindentation experiments.



Author(s):  
Nian Zhang ◽  
Xiang Zhang ◽  
Fan Gao ◽  
Baoxing Xiong ◽  
Xiao Yuan


Sign in / Sign up

Export Citation Format

Share Document