The usage of rice straw as a major substrate for the production of surfactin by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation

2013 ◽  
Vol 127 ◽  
pp. 96-102 ◽  
Author(s):  
Zhen Zhu ◽  
Fengge Zhang ◽  
Zhong Wei ◽  
Wei Ran ◽  
Qirong Shen
2016 ◽  
Vol 3 (02) ◽  
Author(s):  
Cornelius Damar Hanung ◽  
Ronald Osmond ◽  
Hendro Risdianto ◽  
Sri Harjati Suhardi ◽  
Tjandra Setiadi

White rot fungi of Marasmius sp. is a fungus which produce laccase in high activity. Laccase is one of the ligninolityc enzymes that capable to degrade lignin. This ability can be used for the pretreatment of lignocellulosic materials in the bioethanol production. Laccase was produced in flask by batch process using Solid State Fermentation (SSF). The optimisation was conducted by statistically of full factorial design. The particle size, moisture content, and Cu concentration were investigated in this study. Rice straw was used as solid substrate and the glycerol was used as the carbon sources in modified Kirk medium. The results showed that particle size of rice straw did not affect significantly to the enzyme activity. The highest laccase activity of 4.45 IU/g dry weight was obtained at the moisture content of 61% and Cu concentration of 0.1 mM.Keywords: laccase, Marasmius sp., optimisation, rice straw, solid state fermentation ABSTRAKJamur pelapuk putih, Marasmius sp. merupakan jamur yang menghasilkan enzim lakase dengan aktivitas tinggi. Lakase merupakan enzim ligninolitik yang dapat mendegradasi lignin. Kemampuan ini dapat digunakan untuk proses pengolahan awal bahan lignoselulosa pada pembuatan bioetanol. Produksi lakase dilakukan dalam labu dengan modus batch menggunakan fermentasi kultur padat. Optimisasi produksi enzim lakase dengan metode fermentasi padat dilakukan dengan  rancangan percobaan faktorial penuh. Pengaruh ukuran partikel, kelembapan, dan konsentrasi Cu diuji dengan medium penyangga jerami dengan menambahkan gliserol dalam medium Kirk termodifikasi sebagai sumber karbon. Penelitian ini menunjukkan bahwa ukuran jerami tidak berpengaruh signifikan terhadap aktivitas enzim. Aktivitas enzim lakase maksimum terjadi pada saat kelembapan 61% dan konsentrasi Cu 0,1 mM dengan aktivitas enzim lakase/berat kering tertinggi mencapai 4,45 IU/g.Kata kunci: lakase, Marasmius sp., optimisasi, jerami, fermentasi kultur padat


2011 ◽  
Vol 356-360 ◽  
pp. 1819-1822
Author(s):  
Shan Shan Du ◽  
Lu Yang ◽  
Jian Zhang Lu ◽  
Qing Qing Li ◽  
Juan Xu ◽  
...  

The study demonstrates the starter construction and its solid state fermentation (SSF) using rice straw as substrate for lignocellulases production. The starter is constructed by natural microflora growing on rice straw additionally reinforced with Aspergillus niger ZJU-RYD1, using the SSF substrate rice straw with 90% moisture content, successfully produced the integrate and high active lignocellulases at about 72 h, i.e. CMCase 12.44 U/g, cellobiase 12.05 U/g, FPAase 3.18 U/g, xylanase 365.61 U/g, lassase 2.48 U/g. In this study the strategy is satisfactorily developed to construct the starter for high effective and low-cost production of lignocellulases using rice straw as substrate, based on natural microflora and additional reinforcing with special strain.


Animals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1144
Author(s):  
Yang Li ◽  
Baozhu Guo ◽  
Chong Li ◽  
Weiwei Wang ◽  
Zhengke Wu ◽  
...  

The aims of this study were to screen and isolate a highly efficient strain from the rumen of a cow that can degrade the antigenic soy proteins in soybean meal (SBM) and improve the nutritional value of SBM by fermenting it with this strain. The safety of this strain was investigated with an acute oral toxicity test. A Bacillus amyloliquefaciens strain was successfully screened with plate tests and fermentation. After solid state fermentation of SBM with B. amyloliquefaciens for 24 h, the amounts of glycinin and β-conglycinin, two major antigenic proteins in SBM, decreased by 92.32% and 85.05%, respectively. The crude protein content in the fermented soybean meal (FSBM) increased by 17.54% compared with that in SBM. Notably, the trichloroacetic-acid-soluble protein (TCA-SP) content, particularly small peptides and free amino acids, was 9.97-fold higher in FSBM than in SBM. The in vitro dry matter digestibility and digestible energy of SBM increased from 62.91% to 72.52% and from 10.42 MJ/kg to 13.37 MJ/kg (dry matter basis), respectively, after fermentation. The acute oral toxicity test suggested that the strain exerted no harmful effects on the relative organ weights, the morphological tissue structure, or the health of mice. These results indicate that the B. amyloliquefaciens strain isolated in this study is a safe strain for animals, and could be used to improve the nutritional quality of SBM by solid-state fermentation.


Sign in / Sign up

Export Citation Format

Share Document