Performance of a pilot-scale reverse osmosis process for water recovery from biologically-treated textile wastewater

2019 ◽  
Vol 249 ◽  
pp. 109382 ◽  
Author(s):  
Erkan Sahinkaya ◽  
Selen Tuncman ◽  
Ibrahim Koc ◽  
Ali Riza Guner ◽  
Suheyla Ciftci ◽  
...  
2020 ◽  
Vol 38 ◽  
pp. 101646
Author(s):  
Bahar Ozbey-Unal ◽  
Philip Isaac Omwene ◽  
Meltem Yagcioglu ◽  
Çigdem Balcik-Canbolat ◽  
Ahmet Karagunduz ◽  
...  

2015 ◽  
Vol 73 (6) ◽  
pp. 1426-1433 ◽  
Author(s):  
Kun Li ◽  
Chao Jiang ◽  
Jianxing Wang ◽  
Yuansong Wei

A combination of membrane bioreactor (MBR) and nanofiltration (NF) was tested at pilot-scale treating textile wastewater from the wastewater treatment station of a textile mill in Wuqing District of Tianjin (China). The MBR-NF process showed a much better treatment efficiency on the removal of the chemical oxygen demand, total organic carbon, color and turbidity in comparison with the conventional processes. The water recovery rate was enhanced to over 90% through the recycling of NF concentrate to the MBR, while the MBR-NF showed a stable permeate water quality that met with standards and could be directly discharged or further reused. The recycled NF concentrate caused an accumulation of refractory compounds in the MBR, which significantly influenced the treatment efficiency of the MBR. However, the sludge characteristics showed that the activated sludge activity was not obviously inhibited. The results of fluorescence spectra and molecular weight distribution indicated that those recalcitrant pollutants were mostly protein-like substances and a small amount of humic acid-like substances (650–6,000 Da), which contributed to membrane fouling of NF. Although the penetrated protein-like substances caused the residual color in NF permeate, the MBR-NF process was suitable for the advanced treatment and reclamation of textile wastewater under high water yield.


2018 ◽  
Vol 76 ◽  
pp. 566-574 ◽  
Author(s):  
D. Cingolani ◽  
F. Fatone ◽  
N. Frison ◽  
M. Spinelli ◽  
A.L. Eusebi

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 588
Author(s):  
Eiji Kamio ◽  
Hiroki Kurisu ◽  
Tomoki Takahashi ◽  
Atsushi Matsuoka ◽  
Tomohisa Yoshioka ◽  
...  

Forward osmosis (FO) membrane process is expected to realize energy-saving seawater desalination. To this end, energy-saving water recovery from a draw solution (DS) and effective DS regeneration are essential. Recently, thermo-responsive DSs have been developed to realize energy-saving water recovery and DS regeneration. We previously reported that high-temperature reverse osmosis (RO) treatment was effective in recovering water from a thermo-responsive ionic liquid (IL)-based DS. In this study, to confirm the advantages of the high-temperature RO operation, thermo-sensitive IL-based DS was treated by an RO membrane at temperatures higher than the lower critical solution temperature (LCST) of the DS. Tetrabutylammonium 2,4,6-trimethylbenznenesulfonate ([N4444][TMBS]) with an LCST of 58 °C was used as the DS. The high-temperature RO treatment was conducted at 60 °C above the LCST using the [N4444][TMBS]-based DS-lean phase after phase separation. Because the [N4444][TMBS]-based DS has a significantly temperature-dependent osmotic pressure, the DS-lean phase can be concentrated to an osmotic pressure higher than that of seawater at room temperature (20 °C). In addition, water can be effectively recovered from the DS-lean phase until the DS concentration increased to 40 wt%, and the final DS concentration reached 70 wt%. From the results, the advantages of RO treatment of the thermo-responsive DS at temperatures higher than the LCST were confirmed.


2010 ◽  
Vol 62 (12) ◽  
pp. 2801-2810 ◽  
Author(s):  
Yen-Hui Lin

A pilot-scale fixed-biofilm reactor (FBR) was established to treat textile wastewater to evaluate the feasibility of replacing conventional treatment processes that involve activated sludge and coagulation units. A kinetic model was developed to describe the biodegradation of textile wastewater by FBR. Batch kinetic tests were performed to evaluate the biokinetic parameters that are used in the model. FBR column test was fed with a mean COD of 692 mg/L of textile wastewater from flow equalization unit. The influent flow rate was maintained at 48.4 L/h for FBR column test. Experimental data and model-predicted data for substrate effluent concentration (as COD), concentration of suspended biomass in effluent and the amount of carbon dioxide (CO2) produced in the effluent agree closely with each other. Microscopic observations demonstrated that the biofilm exhibited a uniform distribution on the surface of polyurethane foam sponge. Under a steady-state condition, the effluent COD from FBR was about 14.7 mg COD/L (0.0213 Sb0), meeting the discharge standard (COD < 100 mg/L) that has been set by the government of Taiwan for textile wastewater effluent. The amount of biofilm and suspended biomass reached a maximal value in the steady state when the substrate flux reached a constant value and remained maximal. Approximately 33% of the substrate concentration (as COD) was converted to CO2 during biodegradation in the FBR test. The experimental and modeling schemes proposed in this study could be employed to design a full-scale FBR to treat textile wastewater.


2013 ◽  
Vol 52 (4-6) ◽  
pp. 600-611 ◽  
Author(s):  
Santosh Raj Pandey ◽  
Veeriah Jegatheesan ◽  
Kanagaratnam Baskaran ◽  
Li Shu ◽  
Shobha Muthukumaran

2005 ◽  
Vol 52 (4) ◽  
pp. 91-98 ◽  
Author(s):  
C. Lubello ◽  
R. Gori

Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge+clariflocculation+ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.


Sign in / Sign up

Export Citation Format

Share Document