Cavitation based treatment of industrial wastewater: A critical review focusing on mechanisms, design aspects, operating conditions and application to real effluents

2021 ◽  
Vol 300 ◽  
pp. 113786
Author(s):  
C. Agarkoti ◽  
P.D. Thanekar ◽  
P.R. Gogate
2005 ◽  
Vol 2005 (14) ◽  
pp. 2232-2247
Author(s):  
Michael S. Demko ◽  
Frank Coughenour ◽  
John J. Pacifici ◽  
Sam Jeyanayagam ◽  
David T. Redmon

2007 ◽  
Vol 55 (8-9) ◽  
pp. 51-58 ◽  
Author(s):  
M.A. Martín Martín ◽  
L. López Enríquez ◽  
M. Fernández-Polanco ◽  
S. Villaverde ◽  
P.A. García-Encina

Two hybrid fluidised bed reactors filled with sepiolite and granular activated carbon (GAC) were operated with short cycled aeration for removing organic matter, total nitrogen and phosphorous, respectively. Both reactors were continuously operated with synthetic and/or industrial wastewater containing 350–500 mg COD/L, 110–130 mg NKT/L, 90–100 mg NH3-N/L and 12–15 mg P/L for 8 months. The reactor filled with sepiolite, treating only synthetic wastewater, removed COD, ammonia, total nitrogen and phosphorous up to 88, 91, 55 and 80% with a hydraulic retention time (HRT) of 10 h, respectively. These efficiencies correspond to removal rates of 0.95 kgCODm−3d−1 and 0.16 kg total N m−3d−1.The reactor filled with GAC was operated for 4 months with synthetic wastewater and 4 months with industrial wastewater, removing 98% of COD, 96% of ammonia, and 66% of total nitrogen, with an HRT of 13.6 h. No significant phosphorous removing activity was observed in this reactor. Microbial communities growing with both reactors were followed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The microbial fingerprints, i.e. DGGE profiles, indicated that biological communities in both reactors were stable along the operational period even when the operating conditions were changed.


2007 ◽  
Vol preprint (2007) ◽  
pp. 1 ◽  
Author(s):  
L. Mark Hewitt ◽  
Tibor Kovacs ◽  
Monique Dubé ◽  
Deborah MacLatchy ◽  
Pierre Martel ◽  
...  

Author(s):  
Pooja Sharma ◽  
Ashutosh Kumar Pandey ◽  
Sang-Hyoun Kim ◽  
Surendra Pratap Singh ◽  
Preeti Chaturvedi ◽  
...  

2011 ◽  
Vol 356-360 ◽  
pp. 1739-1742
Author(s):  
Chun Mei Guo ◽  
Jin Fu Chen ◽  
Zhong Zhi Zhang ◽  
Li Jun Zhao

Hybrid biofilm reactor has become a technically as well as economically feasible option for treatment of industrial wastewater. This article presents a critical review of some basic mathematical biofilm models. Mainly focus on the development and the solution of these models. The aim is to find a reasonable and simple model of hybrid biofilm reactor under aerobic and anoxic conditions and to simulate the decontamination of petrochemical wastewater.


2009 ◽  
Vol 4 (1) ◽  
Author(s):  
S. Morling

This paper presents performance experiences from the operation of a large SBR facility in Nowy Targ, Poland. The plant has been in operation since 1995, and a number of investigations have contributed to the evaluation of the operating conditions at the Nowy Targ plant. The plant was designed for treating municipal and industrial wastewater from about 150,000 person equivalents. The plant receives chromium rich wastewater from almost 400 small and medium-sized tanneries in the area. Although the Cr concentration sometimes exceeds 20 ppm in the combined incoming wastewater, the nutrient removal as well as organic removal has proven to be very good. The possible effect of Cr acting as a precipitant for phosphorus is also addressed. The influence of water temperature on the nitrogen performance is clearly demonstrated by the results. The prevailing low water temperature has affected but not inhibited the nitrogen removal. The phosphorus removal as found in this investigation suggests an advanced biological removal; however the impact of a possible precipitation by Cr is addressed.


2014 ◽  
Vol 70 (2) ◽  
pp. 279-288 ◽  
Author(s):  
Asun Larrea ◽  
Andre Rambor ◽  
Malcolm Fabiyi

The use of membrane bioreactors (MBRs) in activated sludge wastewater treatment has grown significantly in the last decade. While there is growing awareness and knowledge about the application of MBR technology in municipal wastewater treatment, not much information is available on the application of MBRs in industrial wastewater treatment. A comparative study of design data, operating conditions and the major challenges associated with MBR operations in 24 MBR plants treating both municipal and industrial wastewater, built by and/or operated by Praxair, Inc., is presented. Of the 24 MBR systems described, 12 of the plants used high purity oxygen (HPO). By enabling a wide range of food/microorganism ratios and loading conditions in the same system, HPO MBR systems can extend the options available to industrial plant operators to meet the challenges of wide fluctuations in organic loading and footprint limitations. While fouling in industrial MBR systems can be an issue, adequate flux and permeability values can be reliably maintained by the use of good maintenance strategies and effective process controls (pretreatment, cleaning and membrane autopsies).


Sign in / Sign up

Export Citation Format

Share Document