Effect of submerged plant coverage on phytoplankton community dynamics and photosynthetic activity in situ

2022 ◽  
Vol 301 ◽  
pp. 113822
Author(s):  
Xue Peng ◽  
Qingwei Lin ◽  
Biyun Liu ◽  
Suzhen Huang ◽  
Wenhao Yan ◽  
...  
Hydrobiologia ◽  
2020 ◽  
Vol 848 (1) ◽  
pp. 237-249 ◽  
Author(s):  
Miquel Lürling

AbstractPhytoplankton is confronted with a variable assemblage of zooplankton grazers that create a strong selection pressure for traits that reduce mortality. Phytoplankton is, however, also challenged to remain suspended and to acquire sufficient resources for growth. Consequently, phytoplanktic organisms have evolved a variety of strategies to survive in a variable environment. An overview is presented of the various phytoplankton defense strategies, and costs and benefits of phytoplankton defenses with a zooming in on grazer-induced colony formation. The trade-off between phytoplankton competitive abilities and defenses against grazing favor adaptive trait changes—rapid evolution and phenotypic plasticity—that have the potential to influence population and community dynamics, as exemplified by controlled chemostat experiments. An interspecific defense–growth trade-off could explain seasonal shifts in the species composition of an in situ phytoplankton community yielding defense and growth rate as key traits of the phytoplankton. The importance of grazing and protection against grazing in shaping the phytoplankton community structure should not be underestimated. The trade-offs between nutrient acquisition, remaining suspended, and grazing resistance generate the dynamic phytoplankton community composition.


2021 ◽  
Vol 123 ◽  
pp. 107352
Author(s):  
Yulu Tian ◽  
Yuan Jiang ◽  
Qi Liu ◽  
Dingxue Xu ◽  
Yang Liu ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205260 ◽  
Author(s):  
Jianming Deng ◽  
Wei Zhang ◽  
Boqiang Qin ◽  
Yunlin Zhang ◽  
Hans W. Paerl ◽  
...  

2017 ◽  
Vol 14 (6) ◽  
pp. 1419-1444 ◽  
Author(s):  
David A. Ford ◽  
Johan van der Molen ◽  
Kieran Hyder ◽  
John Bacon ◽  
Rosa Barciela ◽  
...  

Abstract. Phytoplankton form the base of the marine food chain, and knowledge of phytoplankton community structure is fundamental when assessing marine biodiversity. Policy makers and other users require information on marine biodiversity and other aspects of the marine environment for the North Sea, a highly productive European shelf sea. This information must come from a combination of observations and models, but currently the coastal ocean is greatly under-sampled for phytoplankton data, and outputs of phytoplankton community structure from models are therefore not yet frequently validated. This study presents a novel set of in situ observations of phytoplankton community structure for the North Sea using accessory pigment analysis. The observations allow a good understanding of the patterns of surface phytoplankton biomass and community structure in the North Sea for the observed months of August 2010 and 2011. Two physical–biogeochemical ocean models, the biogeochemical components of which are different variants of the widely used European Regional Seas Ecosystem Model (ERSEM), were then validated against these and other observations. Both models were a good match for sea surface temperature observations, and a reasonable match for remotely sensed ocean colour observations. However, the two models displayed very different phytoplankton community structures, with one better matching the in situ observations than the other. Nonetheless, both models shared some similarities with the observations in terms of spatial features and inter-annual variability. An initial comparison of the formulations and parameterizations of the two models suggests that diversity between the parameter settings of model phytoplankton functional types, along with formulations which promote a greater sensitivity to changes in light and nutrients, is key to capturing the observed phytoplankton community structure. These findings will help inform future model development, which should be coupled with detailed validation studies, in order to help facilitate the wider application of marine biogeochemical modelling to user and policy needs.


2000 ◽  
Vol 125 (2) ◽  
pp. 235-241 ◽  
Author(s):  
O. Ayari ◽  
M. Dorais ◽  
A. Gosselin

Daily and seasonal variations of photosynthetic activity, chlorophyll a (Chl-a) fluorescence and foliar carbohydrate content were studied in situ on greenhouse tomato (Lycopersicon esculentum Mill. `Trust') plants grown under CO2 enrichment and supplemental lighting. The objective of this study was to assess the effect of seasonal variation of the photosynthetic photon flux (PPF) on photosynthetic efficiency of tomato plants and to determine the presence or absence of photosynthetic down-regulation under greenhouse growing conditions prevailing in northern latitudes. During winter, the fifth and the tenth leaves of tomato plants showed low, constant daily photosynthetic activity suggesting a source limitation under low PPF. In winter, the ratio of variable to maximum Chl-a fluorescence in dark adapted state (Fv/Fm) remained constant during the day indicating no photoinhibition occurred. In February, an increase in photosynthetic activity was followed by a decline during March, April, and May accompanied by an increase in sucrose and daily starch concentrations and constant but high hexose level. This accumulation was a long-term response to high PPF and CO2 enrichment which would be caused by a sink limitation. Thus, in spring we observed an in situ downregulation of photosynthesis. The ratio Fv/Fm decreased in spring compared to winter in response to increasing PPF. The daily decline of Fv/Fm was observed particularly as a midday depression followed by a recovery towards the end of the day. This indicated that tomato leaves were subject to a reversible inhibition in spring. Fv/Fm was lower in March than in April and May even though PPF was higher in April and May than in March. These results suggest that tomato plants develop an adaptive and protective strategy as PPF increases in spring.


2012 ◽  
Vol 69 (2) ◽  
pp. 369-381 ◽  
Author(s):  
Sonya M. Havens ◽  
Christel S. Hassler ◽  
Rebecca L. North ◽  
Stephanie J. Guildford ◽  
Greg Silsbe ◽  
...  

Phytoplankton interactions with iron (Fe) were examined in surface waters of Lake Erie during summer thermal stratification. Lake-wide sampling in June and September 2005 was conducted using a continuous surface water sampler (1 m sampling depth) and in July at 18 hydrographic stations (5 m sampling depth). In situ measurements of photosynthetic efficiency (maximum quantum yield of photosystem II) and phytoplankton community composition were measured using fast repetition rate fluorometry and a phytoplankton pigment-specific fluorometer, respectively, during June and September. High ratios (73%–85%) of intracellular Fe to particulate Fe coincident with increases in chlorophyll a (Chl a) concentrations in the western and central basins in June and July imply that the majority of Fe in these regions was associated with intracellular pools. Correlations between intracellular Fe and Chl a were frequently observed when Heterokontophyta and Pyrrophyta dominated the phytoplankton community. Assimilation of Fe by the phytoplankton strongly influenced its partitioning between the dissolved and particulate phase. Dissolved iron (<0.45 µm) concentrations were proportional to Chl a concentrations and both dissolved iron and Chl a were inversely proportional to nitrate concentrations in July and September, suggesting that dissolved iron influenced both nitrate drawdown and Chl a concentrations in Lake Erie surface waters in summer.


2020 ◽  
Vol 26 (5) ◽  
pp. 2756-2784 ◽  
Author(s):  
Jason D. Stockwell ◽  
Jonathan P. Doubek ◽  
Rita Adrian ◽  
Orlane Anneville ◽  
Cayelan C. Carey ◽  
...  

1993 ◽  
pp. 189-209 ◽  
Author(s):  
S. R. Carpenter ◽  
J. A. Morrice ◽  
J. J. Elser ◽  
A. L. ST. Amand ◽  
N. A. MacKay

1983 ◽  
Vol 61 (3) ◽  
pp. 642-655 ◽  
Author(s):  
Thomas J. Moser ◽  
Thomas H. Nash III ◽  
Steven O. Link

The daily, in situ gross photosynthetic patterns of Cladonia stellaris (Opiz.) Pouz. & Vězda. and Cladonia rangiferina (L.) Wigg. were monitored during portions of the 1977, 1978, and 1979 growing seasons at Anaktuvuk Pass, Alaska. Photosynthetic activity in both species closely paralleled atmospheric moisture status, where peak photosynthetic rates were attained during or following sporadic summer rain. In addition, thallus absorption of moisture during extended periods of high atmospheric water vapor content gave rise to short periods of minimal photosynthetic activity. During late evening and early morning hours moistened thalli exhibited minimal or no photosynthetic activity, coinciding with consistent attenuation in solar radiation during these periods. Photosynthetic activity was not homogeneous throughout the thallus. The greatest activity occurred in the apical regions and decreased progressively into the basal regions. The apical 10-mm regions of C. stellaris and C. rangiferina thalli accounted for approximately 50% of their photosynthetic capabilities. The potential gross CO2 assimilation of the apical 10-mm regions over 72 days of the 1978 growing season was estimated at approximately 35 g CO2∙m−2 and 16 g CO2∙m−2 for C. stellaris and C. rangiferina, respectively.


2015 ◽  
Vol 12 (13) ◽  
pp. 4051-4066 ◽  
Author(s):  
M. Thyssen ◽  
S. Alvain ◽  
A. Lefèbvre ◽  
D. Dessailly ◽  
M. Rijkeboer ◽  
...  

Abstract. Phytoplankton observation in the ocean can be a challenge in oceanography. Accurate estimations of its biomass and dynamics will help to understand ocean ecosystems and refine global climate models. Relevant data sets of phytoplankton defined at a functional level and on a sub-meso- and daily scale are thus required. In order to achieve this, an automated, high-frequency, dedicated scanning flow cytometer (SFC, Cytobuoy b.v., the Netherlands) has been developed to cover the entire size range of phytoplankton cells whilst simultaneously taking pictures of the largest of them. This cytometer was directly connected to the water inlet of a PocketFerryBox during a cruise in the North Sea, 08–12 May 2011 (DYMAPHY project, INTERREG IV A "2 Seas"), in order to identify the phytoplankton community structure of near surface waters (6 m) with a high spatial resolution basis (2.2 ± 1.8 km). Ten groups of cells, distinguished on the basis of their optical pulse shapes, were described (abundance, size estimate, red fluorescence per unit volume). Abundances varied depending on the hydrological status of the traversed waters, reflecting different stages of the North Sea blooming period. Comparisons between several techniques analysing chlorophyll a and the scanning flow cytometer, using the integrated red fluorescence emitted by each counted cell, showed significant correlations. For the first time, the community structure observed from the automated flow cytometry data set was compared with PHYSAT reflectance anomalies over a daily scale. The number of matchups observed between the SFC automated high-frequency in situ sampling and remote sensing was found to be more than 2 times better than when using traditional water sampling strategies. Significant differences in the phytoplankton community structure within the 2 days for which matchups were available suggest that it is possible to label PHYSAT anomalies using automated flow cytometry to resolve not only dominant groups but also community structure.


Sign in / Sign up

Export Citation Format

Share Document