scholarly journals Influence of microbial inoculants on co-composting of lignocellulosic crop residues with farm animal manure: A review

2022 ◽  
Vol 302 ◽  
pp. 114088
Author(s):  
Babett Greff ◽  
Jenő Szigeti ◽  
Ágnes Nagy ◽  
Erika Lakatos ◽  
László Varga
2021 ◽  
Vol 9 ◽  
Author(s):  
Rikke Lybæk ◽  
Tyge Kjær

This article investigates how biogas technology can facilitate the deployment of municipal circular bio-economic solutions within the energy and agrarian sectors in Denmark. The emphasis is on the regional climate policy and the existing biogas technology concepts, within a decentralized energy market located in the Southern part of Zealand. The case analysis will identify how such technology can be utilized as a lever for future “extraction-activities,” as for example protein, wax, and furfural substrates. Within Falster & Lolland Municipalities, it is identified that 800.000 tons of animal manure is readily available for biogas production, just as 880.000 tons and 220.000 tons of unused beet tops and residual cereal straw could be feed to biogas facilities as for example co-silage materials. With a potential gas yield of approximately 897.000 MWh, composed by the crop residues alone, the challenge is how to utilize such resources the most efficient when addressing future needs for bio-products and high value materials and energy. Through the lens of Circular Bio-Economy this article addresses three themes, by which biogas technology can become an “engine” for future bioenergy solutions, where cascading activities and use of side-streams are developed: 1) production of biogas by means of local agricultural residues (beet tops, residual straw, and animal manure), combined with 2) “extraction-activities” as furfural and wax from straw, as well as protein from beet tops. Besides this 3) opportunities for upgrading the biogas and distributing it on a natural gas network, hereby enlarging the supply market for energy services from the biogas plant and facilitating the development of a more “integrated energy system,” currently being promoted by the European Commission. This article concludes on a step-by-step approach to utilize biomass residues more efficiently in light of the CBE concept and cascading approach, and the available biomass resources within the specific case area addressed.


2002 ◽  
Vol 34 (4) ◽  
pp. 509-517 ◽  
Author(s):  
Martin H Chantigny ◽  
Denis A Angers ◽  
Philippe Rochette

2017 ◽  
Vol 65 (42) ◽  
pp. 9186-9190 ◽  
Author(s):  
Xueli Chen ◽  
Guanglu Zhao ◽  
Yang Zhang ◽  
Lujia Han ◽  
Weihua Xiao

2019 ◽  
Vol 8 (1) ◽  
pp. 104-116
Author(s):  
Zulzain Ilahude ◽  
Sartin Miolo

The objectives of this community service activity are 1) encouraging students and young farmers to master agricultural technology, 2) developing students' creativity in organic vegetable cultivation with hydroponic technology innovation, 3) utilizing organic waste such as animal manure, crop residues in the form of rice straw, sawdust  , husk charcoal, as a medium for organic fertilizer, 4) providing direct practice on how to make simple hydroponics, the importance of maintaining soil fertility for plants, and entrepreneurship.  Methods in the forming of direct application practice regarding making organic fertilizers, cultivating vegetables, and techniques for making simple hydroponics.  The locations of the activities are in the villages of Tunggulo, Tungulo Selatan, and Bongoime, Tilong Kabila District, Bone Bolango Regency, Gorontalo Province.  This activity was attended by 34 students’ participants from the Department of Agrotechnology and other departments at State University of Gorontalo and collaborated with young farmers, held for 40 days from September 8 to October 10, 2020. The results of the activity showed that community service activities in partner villages were carried out running well and according to the planned program.  Students and young farmers have succeeded in developing hydroponic manufacturing techniques with vegetable commodities and organic growing media that use compost of manure and husk charcoal


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1007A-1007
Author(s):  
Muddappa Rangappa ◽  
Harbans Bhardwaj ◽  
Harry Dalton

An on-farm animal manure, such as chicken manure, can be a source of nutrients for the growth and production of agricultural crops. However, use of manures at rates that are considered adequate for crop production may cause excessive accumulation of phosphorus (P) and also result in leaching of nitrogen (N), thus leading to potential pollution of ground and surface water. Composting of manures with a carbon (C) source can reduce P and N to manageable levels to support production of crops. In order to determine the potential of composted manure for crop production, we studied growth and production of sweet corn by using poultry manure composted with a carbon source of crimson clover hay or wheat straw. These experiments, conducted during 2002 and 2003, compared six treatments: 1) uncomposted chicken manure alone; 2) composted with wheat straw turned weekly; 3) composted with wheat straw turned bi-weekly; 4) composted with crimson clover hay turned weekly; 5) composted with crimson clover hay turned bi-weekly; and 6) a control with a commercial recommendation rate of N fertilizer. These treatments resulted in 9244; 13,866; 15,688; 16,734; and 11,977 marketable ears/acre, respectively, indicating significant superiority of treatments 4 and 5 over all others. Similar results were obtained for ear length, ear fresh weight, and plant height. Results indicated that composting of poultry litter with wheat straw or crimson clover hay is a viable way to utilize poultry manure for production of sweet corn and other agricultural crops. This study implies that composting of on-farm animal manure with organic material, such as hay and straw, could play an important role in development of an environmentally friendly, economically feasible, and sustainable organic production of agricultural crops.


1983 ◽  
Vol 26 (1) ◽  
pp. 0223-0227 ◽  
Author(s):  
J. R. Fischer ◽  
D. M. Sievers ◽  
C. D. Fulhage

Soil Research ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 332 ◽  
Author(s):  
Johannes Lund Jensen ◽  
Per Schjønning ◽  
Bent T. Christensen ◽  
Lars Juhl Munkholm

Nutrient management affects not only crop productivity and environmental quality, but also soil physical properties related to soil tilth. Previous studies on soil physical properties have focussed on effects of fertiliser type, whereas the effect of fertiliser rate has been neglected. We examined the impact of no fertilisation (UNF) and different rates of mineral fertiliser (½NPK and 1NPK) and animal manure (1½AM) on an ensemble of soil physical characteristics, with the amount of fertiliser added at level 1 corresponding to the standard rate of plant nutrients for a given crop. Soil was from the Askov long-term field experiment, initiated in 1894 on a hard-setting sandy loam. We assessed clay dispersibility, wet-stability of aggregates, aggregate strength, bulk soil strength and soil pore characteristics. The soils receiving 1NPK and 1½AM had similar soil physical properties, the only differences being a wider range in the optimum water content for tillage and more plant-available water in the soil amended with 1½AM. Suboptimal fertiliser rates (UNF and ½NPK) increased clay dispersibility, soil cohesion and bulk density, and reduced aggregate stability. The physical properties of soils exposed to suboptimal fertilisation indicate that the level of soil organic matter, including active organic binding and bonding materials, has become critically low due to reduced inputs of crop residues. While long-term suboptimal fertilisation compromises soil physical properties, crop-yield-optimised rates of mineral fertilisers and animal manure appear to sustain several soil physical properties equally well.


2017 ◽  
Vol 9 (6) ◽  
pp. 98 ◽  
Author(s):  
Paul Anguria ◽  
George N. Chemining’wa ◽  
Richard N. Onwonga ◽  
Michael A. Ugen

A study was conducted at the National Semi-Arid Resources Research Institute-Serere, Uganda for three seasons (2013 short rains, 2014 long rains and 2014 short rains) to investigate the effect of crop residues and animal manure on soil bulk density (SBD), soil moisture content (SMC) and water use efficiency (WUE) of sesame. The experiment was laid out in a randomized complete block design with three replications. The treatments comprised: control, 4 crop residues, 2 animal manures and combinations of 2 animal manures and 4 crop residues all applied at two rates of 3 and 6 t/ha. Plots treated with 6 t/ha of millet husks produced the highest SMC (37.46%) and lowest SBD (1.1717 g/cm3) across seasons; while plots treated with 3 t/ha of millet husks produced the highest WUE of sesame (9.92 kg ha-1 mm-1) across seasons compared with other crop residue and animal manure treatments applied singly. Soil moisture content was highest (38.09%) and SBD lowest (1.0520 g/cm3) across seasons in plots treated with 6 t/ha of poultry manure plus millet husks; while plots amended with 3 t/ha of poultry manure plus millet husks produced the highest WUE of sesame (9.40 g/cm3) across seasons compared with other treatments. Crop residues influenced SMC and SBD in the order; millet husks > cowpea husks > sorghum husks > groundnut shells. Crop residues affected WUE of sesame in the order; millet husks > sorghum husks > groundnut shells > cowpea husks. This study has demonstrated that poultry manure plus millet husks have a potential to enhance WUE of sesame.


Sign in / Sign up

Export Citation Format

Share Document