cyclin e2
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 11)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Vol 12 (3) ◽  
pp. 617-624
Author(s):  
Juan Zheng ◽  
Liang Zhou

This study intends to investigate whether miR-29b derived from BMSC exosomes (BMSC-exos) affects laryngeal cancer progression. RT-qPCR detected miR-29b level in BMSCs and BMSC-exos. After miR-29b was overexpressed in BMSCs, exos were extracted from BMSCs and used to treat laryngeal cancer cells, followed by CCK-8 assay and soft agar assay. When cells were treated with FOXP1 inhibitor or cyclin E2 vector, Western blot analyzed the expression of related proteins and flow cytometry assessed cell cycle distribution. In vivo experiment was conducted to assess miR-29b’s effect on tumor growth. miR-29b was upregulated in BMSC-exos, but lowly expressed in cancer cells. miR-29b upregulation inhibited the proliferation of laryngeal cancer cells and delayed tumor progression In vivo by inducing cell cycle arrest. Importantly, miR-29b bound 3′UTR of FXOP1 to inhibit its expression, and further reduced cyclin E2 level. sh-FXOP1 or cyclin E2 vector can restore the cell cycle and proliferation caused by miR-29b. In conclusion, miR-29b enriched in BMSC-exo can down-regulate cyclin E2 expression through targeted inhibition of FXOP1, thereby inhibiting the progression of laryngeal cancer.


2021 ◽  
Author(s):  
Shahan Mamoor

Breast cancer affects women at relatively high frequency (1). We mined published microarray datasets (2, 3) to determine in an unbiased fashion and at the systems level genes most differentially expressed in the primary tumors of patients with breast cancer. We report here significant differential expression of the gene encoding cyclin E2, CCNE2, when comparing primary tumors of the breast to the tissue of origin, the normal breast. CCNE2 was also differentially expressed in the tumor cells of patients with triple negative breast cancer. CCNE2 mRNA was present at significantly higher quantities in tumors of the breast as compared to normal breast tissue. Analysis of human survival data revealed that expression of CCNE2 in primary tumors of the breast was correlated with distant metastasis-free survival in patients with luminal A subtype cancer. CCNE2 may be of relevance to initiation, maintenance or progression of cancers of the female breast.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Kamila Kaminska ◽  
Nina Akrap ◽  
Johan Staaf ◽  
Carla L. Alves ◽  
Anna Ehinger ◽  
...  

Abstract Background Resistance to endocrine treatment in metastatic breast cancer is a major clinical challenge. Clinical tools to predict both drug resistance and possible treatment combination approaches to overcome it are lacking. This unmet need is mainly due to the heterogeneity underlying both the mechanisms involved in resistance development and breast cancer itself. Methods To study the complexity of the mechanisms involved in the resistance to the selective estrogen receptor degrader (SERD) fulvestrant, we performed comprehensive biomarker analyses using several in vitro models that recapitulate the heterogeneity of developed resistance. We further corroborated our findings in tissue samples from patients treated with fulvestrant. Results We found that different in vitro models of fulvestrant resistance show variable stability in their phenotypes, which corresponded with distinct genomic alterations. Notably, the studied models presented adaptation at different cell cycle nodes to facilitate progression through the cell cycle and responded differently to CDK inhibitors. Cyclin E2 overexpression was identified as a biomarker of a persistent fulvestrant-resistant phenotype. Comparison of pre- and post-treatment paired tumor biopsies from patients treated with fulvestrant revealed an upregulation of cyclin E2 upon development of resistance. Moreover, overexpression of this cyclin was found to be a prognostic factor determining resistance to fulvestrant and shorter progression-free survival. Conclusions These data highlight the complexity of estrogen receptor positive breast cancer and suggest that the development of diverse resistance mechanisms dictate levels of ER independence and potentially cross-resistance to CDK inhibitors.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2268 ◽  
Author(s):  
Christine Lee ◽  
Kristine J. Fernandez ◽  
Sarah Alexandrou ◽  
C. Marcelo Sergio ◽  
Niantao Deng ◽  
...  

Genome doubling is an underlying cause of cancer cell aneuploidy and genomic instability, but few drivers have been identified for this process. Due to their physiological roles in the genome reduplication of normal cells, we hypothesised that the oncogenes cyclins E1 and E2 may be drivers of genome doubling in cancer. We show that both cyclin E1 (CCNE1) and cyclin E2 (CCNE2) mRNA are significantly associated with high genome ploidy in breast cancers. By live cell imaging and flow cytometry, we show that cyclin E2 overexpression promotes aberrant mitosis without causing mitotic slippage, and it increases ploidy with negative feedback on the replication licensing protein, Cdt1. We demonstrate that cyclin E2 localises with core preRC (pre-replication complex) proteins (MCM2, MCM7) on the chromatin of cancer cells. Low CCNE2 is associated with improved overall survival in breast cancers, and we demonstrate that low cyclin E2 protects from excess genome rereplication. This occurs regardless of p53 status, consistent with the association of high cyclin E2 with genome doubling in both p53 null/mutant and p53 wildtype cancers. In contrast, while cyclin E1 can localise to the preRC, its downregulation does not prevent rereplication, and overexpression promotes polyploidy via mitotic slippage. Thus, in breast cancer, cyclin E2 has a strong association with genome doubling, and likely contributes to highly proliferative and genomically unstable breast cancers.


2020 ◽  
Vol 27 (5) ◽  
pp. R93-R112 ◽  
Author(s):  
H H Milioli ◽  
S Alexandrou ◽  
E Lim ◽  
C E Caldon

Cyclin E1 is one the most promising biomarkers in estrogen receptor positive (ER+) breast cancer for response to the new standard of care drug class, CDK4/6 inhibitors. Because of its strong predictive value, cyclin E1 expression may be used in the future to triage patients into potential responders and non-responders. Importantly, cyclin E1 is highly related to cyclin E2, and both cyclin E1 and cyclin E2 are estrogen target genes that can facilitate anti-estrogen resistance and can be highly expressed in breast cancer. However cyclin E1 and E2 are often expressed in different subsets of patients. This raises questions about whether the expression of cyclin E1 and cyclin E2 have different biological drivers, if high expressing subsets represent different clinical subtypes, and how to effectively develop a biomarker for E-cyclin expression. Finally, several pan-CDK inhibitors that target cyclin E-CDK2 activity have reached Phase II clinical trials. In this review, we outline the data identifying that different cohorts of patients have high expression of cyclins E1 and E2 in ER+ cancer and address the implications for biomarker and therapeutic development.


2019 ◽  
Vol 27 (5) ◽  
pp. 1028-1038
Author(s):  
Qipeng Xie ◽  
Caiyi Chen ◽  
Haiying Li ◽  
Jiheng Xu ◽  
Lei Wu ◽  
...  

2019 ◽  
Author(s):  
Mehmet E. Karasu ◽  
Scott Keeney

AbstractCyclins, as regulatory partners of cyclin-dependent kinases (CDKs), control the switch-like cell cycle transitions that orchestrate orderly duplication and segregation of genomes. Compared to mitosis, relatively little is known about how cyclin-CDK complexes control meiosis, the specialized cell division that generates gametes for sexual production. Mouse cyclin B3 was previously shown to have expression restricted to the beginning of meiosis, making it a candidate to regulate meiotic events. Indeed, female mice lacking cyclin B3 are sterile because oocytes arrest at the metaphase-to-anaphase transition of meiosis I. However, whether cyclin B3 functions during spermatogenesis was untested. Here, we found that males lacking cyclin B3 are fertile and show no detectable defects in spermatogenesis based on histological analysis of seminiferous tubules. Cytological analysis further showed no detectable defects in homologous chromosome synapsis or meiotic progression, and suggested that recombination is initiated and completed efficiently. Moreover, absence of cyclin B3 did not exacerbate previously described meiotic defects in mutants deficient for cyclin E2, suggesting a lack of redundancy between these cyclins. Thus, unlike in females, cyclin B3 is not essential for meiosis in males despite its prominent meiosis-specific expression.


Sign in / Sign up

Export Citation Format

Share Document