Intestinal metabolism and absorption mechanism of multi-components in Gaultheria leucocarpa var. yunnanensis - An assessment using in situ and in vitro models, comparing gut segments in pathological with physiological conditions

2021 ◽  
pp. 114844
Author(s):  
Xiuhuan Wang ◽  
Ying Dong ◽  
Ruolan Song ◽  
Axiang Yu ◽  
Jing Wei ◽  
...  
1990 ◽  
Vol 259 (3) ◽  
pp. G443-G452 ◽  
Author(s):  
L. C. Read ◽  
A. P. Lord ◽  
V. Brantl ◽  
G. Koch

beta-Casomorphins (beta-CMs) derived from milk beta-casein may exert various opiate activities in milk-fed infants. To assess the physiological significance of beta-CMs as a source of circulating opioids in infants, we measured absorption rates of several beta-CMs under near-physiological conditions using in situ autoperfused lamb intestine. The naturally occurring beta-CMs, beta-CM-7 and beta-CM-4-amide, were absorbed readily into blood with no transfer into lymph. Uptake peaked within several minutes of the luminal infusion of peptide but then declined sharply and stopped within a further 10-15 min. The recovery in blood, intestinal contents, and tissue at the end of the 30-min experiment was less than 1% of the infused dose. The low recovery was due to rapid proteolysis based on in vitro studies that demonstrated half-lives of less than 5 min in lamb blood, luminal contents, and lymph. The synthetic dipeptidyl peptidase IV-resistant analogue beta-[D-Ala2]CM- 4-amide was stable during incubation in blood, lymph, or luminal contents and was absorbed into blood at rates that were maximal within several minutes and remained steady for the 30-min period. We conclude that although natural beta-CMs are transferred across the lamb small intestine, rapid degradation within the intestinal lumen, gut epithelium, and blood would prevent entry into the circulation under normal conditions. Val-beta-CM-7, a putative stable precursor, had similar stability and kinetics of absorption to beta-CM-7, results that exclude Val-beta-CM-7 as a stable precursor for delivery of beta-CMs to the circulation. Essentially identical results to those in lambs were obtained in 7-day-old piglets.


2014 ◽  
Vol 28 (9) ◽  
pp. 1288-1294 ◽  
Author(s):  
Zheng-Gen Liao ◽  
Xin-Li Liang ◽  
Jing-Yun Zhu ◽  
Guo-Wei Zhao ◽  
Yong-Mei Guan ◽  
...  

2018 ◽  
Author(s):  
Aurélien Pasturel ◽  
Pierre-Olivier Strale ◽  
Vincent Studer

3D cell culture aims at reconciliating the simplicity of in vitro models with the human like properties encountered in vivo. Soft permeable hydrogels have emerged as user-friendly materials to grow cells in more physiological conditions. With the intent on turning these homogeneous substrates into biomimetic templates, we introduce a generic solution compatible with the most biologically relevant and often frail materials. Here we take control of the chemical environment driving generic radical reactions to craft common gels with patterned light. In a simple microreactor, we harness the well-known inhibition of radicals by oxygen to enable topographical photopolymerization. Strikingly, by sustaining an oxygen rich environment, we can also induce hydrogel photo-scission which turns out to be a powerful and generic subtractive manufacturing method. We finally introduce a flexible patterned functionalization protocol based on available photo-linkers. Using these common tools on the most popular hydrogels, we tailored soft templates where cells grow or self-organize into standardized structures. The platform we describe has the potential to set a standard in future 3D cell culture experiments.


2020 ◽  
Author(s):  
Hui Yang ◽  
Zhishu Tang ◽  
Jiangxue Cheng ◽  
Jing Wang ◽  
Junbo Zou ◽  
...  

Abstract Background: Previous studies have shown that Malus hupehensis (Pamp.) Rehd. extracts have anti-oxidant, anti-aging and other effects, its bioavailability is low, however its absorption mechanism is still unclear. To investigate the absorption properties of hyperin, quercitrin, phloridzin, quercetin, and phloretin in total flavonoids of Malus hupehensis (Pamp.) Rehd. Extracts. Methods: In situ single-pass intestinal perfusion model and in vitro Caco-2 cell model were used in this study. The effects of concentration of the extract, administration time, temperature, different intestinal segments, paracellular pathway were analyzed, and the effect of efflux inhibitors, such as the P-gp inhibitor verapamil, the multidrug resistance protein2 (MRP2) inhibitor indomethacin, the breast cancer resistance protein (BCRP) inhibitor reserpine, on the transport were evaluated. As well as EDTA, a tight junction regulator, was studied.Results: The results indicated that the jejunum was the optimal absorption intestine segment of quercitrin, phloridzin, and phloretin. And the greatest absorption intestine segment of quercetin was ileum. Furthermore, it was found that the absorption mechanisms of phloridzin in extract was involved in passive diffusion and the mediation of P-gp and MRP2 should not be neglected. The absorption mechanisms of quercetin and phloretin from extract involved active transport and were accompanied by the participation of efflux transporters, such as P-gp, MRP2 and BCRP. And also the paracellular pathway was involved in hyperin and quercitrin. Conclusion: The absorption mechanisms of five flavonoids from Malus hupehensis (Pamp.) Rehd. extract are related to the concentration of the drugs, intestinal segments, and efflux protein.


2020 ◽  
Author(s):  
Cheng Wang ◽  
Yimeng Zhou ◽  
Xiaohong Gong ◽  
Li Zheng ◽  
Yunxia Li

Abstract Background: 2,3,5,4'-tetrahydroxystilbence-2-O-β-D-glucoside(TSG) is a polyhydroxyphenolic compound, which exhibited a broad spectrum of pharmacological activities, such asanti-inflammatory, anti-depression, anti-oxidation and anti-atherosclerosis.However, the compound had poor bioavailability and the underlying absorption mechanisms had not been studied. Therefore, the purpose of this study was to investigate the intestinal absorption mechanism of TSG. Methods: This study used Caco-2 cell monolayer model and single-passintestinal perfusion modelto explore the gastrointestinal absorption mechanisms of TSG. The effects of basic parameters such as drug concentration, time and pH on the intestinal absorption of TSG were analyzed by high performance liquid chromatography.The absorption susceptibility of TSG to three inhibitors, P-gp inhibitors verapamil hydrochloride and quinidine, and MRP2 inhibitor probenecid were also assessed. Results: TSG was poorly absorbed in the intestines and the absorption of TSG in stomach is much higher than that in intestine. Both in vitro and in situ experiments showed that the absorption of TSG was saturated with increasing concentration and it was better absorbed in a weakly acidic environment pH 6.4. Moreover, TSG interacts with P-gp and MRP2, and TSG was not only the substrate of the P-gp and MRP2, but also affected the expression of P-gp and MRP2. Conclusions: It wasconcluded that the gastrointestinalabsorption mechanisms ofTSG involved processes passive transport and the participation ofefflux transporters.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1602
Author(s):  
Tanya J. Bennet ◽  
Avineet Randhawa ◽  
Jessica Hua ◽  
Karen C. Cheung

The lungs are affected by illnesses including asthma, chronic obstructive pulmonary disease, and infections such as influenza and SARS-CoV-2. Physiologically relevant models for respiratory conditions will be essential for new drug development. The composition and structure of the lung extracellular matrix (ECM) plays a major role in the function of the lung tissue and cells. Lung-on-chip models have been developed to address some of the limitations of current two-dimensional in vitro models. In this review, we describe various ECM substitutes utilized for modeling the respiratory system. We explore the application of lung-on-chip models to the study of cigarette smoke and electronic cigarette vapor. We discuss the challenges and opportunities related to model characterization with an emphasis on in situ characterization methods, both established and emerging. We discuss how further advancements in the field, through the incorporation of interstitial cells and ECM, have the potential to provide an effective tool for interrogating lung biology and disease, especially the mechanisms that involve the interstitial elements.


2015 ◽  
Vol 153 (2) ◽  
pp. 311-321 ◽  
Author(s):  
Daniel D. Brown ◽  
David J. Dabbs ◽  
Adrian V. Lee ◽  
Kandace P. McGuire ◽  
Gretchen M. Ahrendt ◽  
...  

2012 ◽  
Vol 141 (2) ◽  
pp. 742-753 ◽  
Author(s):  
Yui Kau Fong ◽  
Chen Rui Li ◽  
Siu Kwan Wo ◽  
Shu Wang ◽  
Limin Zhou ◽  
...  

2016 ◽  
Vol 52 (36) ◽  
pp. 6166-6169 ◽  
Author(s):  
Firoj Ali ◽  
Anila H. A. ◽  
Nandaraj Taye ◽  
Devraj G. Mogare ◽  
Samit Chattopadhyay ◽  
...  

New chemodosimetric reagent for the specific detection of hydrazine in physiological conditions as well as for the mapping of its in situ generation in live Hct116 and HepG2 cells by enzymatic transformations.


Sign in / Sign up

Export Citation Format

Share Document