Genotoxic effects of Dukhan: A smoke bath from the wood of Acacia seyal used traditionally by Sudanese women

2021 ◽  
pp. 114868
Author(s):  
Esam E. Elgorashi ◽  
Ibrahim M.S. Eldeen ◽  
Tshepiso J. Makhafola ◽  
Jacobus N. Eloff ◽  
Luc Verschaeve
2020 ◽  
Vol 31 (1) ◽  
pp. 3-10
Author(s):  
V. S. Nedzvetsky ◽  
V. Ya. Gasso ◽  
A. M. Hahut ◽  
I. A. Hasso

Cadmium is a common transition metal that entails an extremely wide range of toxic effects in humans and animals. The cytotoxicity of cadmium ions and its compounds is due to various genotoxic effects, including both DNA damage and chromosomal aberrations. Some bone diseases, kidney and digestive system diseases are determined as pathologies that are closely associated with cadmium intoxication. In addition, cadmium is included in the list of carcinogens because of its ability to initiate the development of tumors of several forms of cancer under conditions of chronic or acute intoxication. Despite many studies of the effects of cadmium in animal models and cohorts of patients, in which cadmium effects has occurred, its molecular mechanisms of action are not fully understood. The genotoxic effects of cadmium and the induction of programmed cell death have attracted the attention of researchers in the last decade. In recent years, the results obtained for in vivo and in vitro experimental models have shown extremely high cytotoxicity of sublethal concentrations of cadmium and its compounds in various tissues. One of the most studied causes of cadmium cytotoxicity is the development of oxidative stress and associated oxidative damage to macromolecules of lipids, proteins and nucleic acids. Brain cells are most sensitive to oxidative damage and can be a critical target of cadmium cytotoxicity. Thus, oxidative damage caused by cadmium can initiate genotoxicity, programmed cell death and inhibit their viability in the human and animal brains. To test our hypothesis, cadmium cytotoxicity was assessed in vivo in U251 glioma cells through viability determinants and markers of oxidative stress and apoptosis. The result of the cell viability analysis showed the dose-dependent action of cadmium chloride in glioma cells, as well as the generation of oxidative stress (p <0.05). Calculated for 48 hours of exposure, the LD50 was 3.1 μg×ml-1. The rates of apoptotic death of glioma cells also progressively increased depending on the dose of cadmium ions. A high correlation between cadmium concentration and apoptotic response (p <0.01) was found for cells exposed to 3–4 μg×ml-1 cadmium chloride. Moreover, a significant correlation was found between oxidative stress (lipid peroxidation) and induction of apoptosis. The results indicate a strong relationship between the generation of oxidative damage by macromolecules and the initiation of programmed cell death in glial cells under conditions of low doses of cadmium chloride. The presented results show that cadmium ions can induce oxidative damage in brain cells and inhibit their viability through the induction of programmed death. Such effects of cadmium intoxication can be considered as a model of the impact of heavy metal pollution on vertebrates.


Toxin Reviews ◽  
1999 ◽  
Vol 18 (3) ◽  
pp. 355-368 ◽  
Author(s):  
L. Ghedira-chekir ◽  
K. Maaroufi ◽  
E. E. Creppy ◽  
H. Bacha
Keyword(s):  

2019 ◽  
Vol 9 (3) ◽  
pp. 409-416
Author(s):  
Svetla Gateva ◽  
◽  
Alexander Stankov ◽  
Tsveta Angelova ◽  
Nadezhda Todorova ◽  
...  

Author(s):  
N. A. Ilyushina ◽  
Yu. A. Revazova

In order to overcome resistance to individual pesticides and improve their effectiveness, formulations containing two or more active substances are constantly being developed and put on the market over recent years. Mixtures of residual amounts of pesticides can be present in water and food and enter the human and animal bodies. However, the combined effect of pesticides on living organisms, including genetic structures in cells, has not been studied enough and it is not yet possible to predict the genotoxic effects of their mixtures based on available data. The purpose of this review was to collect and summarize literature information on the genotoxicity of pesticide combinations obtained at different objects. The results of studies conducted in different countries of the world are discussed, examples of detected synergistic, additive and antagonistic effects are given, indicating the need for testing the genotoxicity of preparative forms of pesticides containing several active substances, as well as mixtures of jointly used pesticides in order to ensure the safe use of pesticides for public health.


2018 ◽  
Vol 6 (1) ◽  
pp. 45-56
Author(s):  
Lalrinzuali Sailo ◽  
◽  
Meesala Krishna Murthy ◽  
Khandayataray Pratima ◽  
Vikas Kumar Roy ◽  
...  

Monosodium glutamate is naturally available non-essential amino acids, which found in naturally occurring foods and used as flavour enhancer worldwide. Monosodium glutamate is believed to be linked with diverse health problems. The aim of the study was toxic effects of monosodium glutamate (MSG) and the protective role of L-carnitine, light on the available literature from last 25 years about diverse toxicity studies which had been carried out on animal and human models. Google scholar, NCBI, PUBMED, EMBASE, Wangfang databases, and Web of Science databases were used to retrieve the available studies. MSG was linked with deleterious effects particularly in animals including induction of obesity, diabetes, hepatotoxic, neurotoxic and genotoxic effects showed in Literature. Few reports revealed increased hunger, food intake, and obesity in human subjects due to MSG consumption. Hepatotoxic, neurotoxic, and genotoxic effects of monosodium glutamate on humans carried out very limitedly. High consumption of monosodium glutamate may be linked with harmful health effects showed in available literatures. So, it is recommended to use common salt instead of MSG. Furthermore, intensive research is required to explore monosodium glutamate–related molecular and metabolic mechanisms. L-carnitine can protect from Hepatotoxic, neurotoxic, renal impairment and genotoxic effects functionally, biochemically and histopathologically with a corresponding reduction of oxidative stress.


1999 ◽  
Vol 27 (16) ◽  
pp. 3276-3282 ◽  
Author(s):  
P. P. H. Van Sloun ◽  
J. G. Jansen ◽  
G. Weeda ◽  
L. H. F. Mullenders ◽  
A. A. van Zeeland ◽  
...  

2021 ◽  
pp. 112323
Author(s):  
Merve Bacanli ◽  
Özgür EŞİM ◽  
Hakan Erdoğan ◽  
Meral Sarper ◽  
Onur Erdem ◽  
...  

Author(s):  
Kailas D. Datkhile ◽  
Satish R. Patil ◽  
Pratik P. Durgawale ◽  
Madhavi N. Patil ◽  
Dilip D. Hinge ◽  
...  

Abstract Background Nanomedicine has evolved as precision medicine in novel therapeutic approach of cancer management. The present study investigated the efficacy of biogenic gold nanoparticles synthesized using Argemone mexicana L. aqueous extract (AM-AuNPs) against the human colon cancer cell line, HCT-15. Results Biosynthesis of AM-AuNPs was determined by ultraviolet-visible spectroscopy and further characterized by transmission electron microscopy, X-ray diffraction, and Fourier transition infrared spectroscopy analysis. The cytotoxic activity of AM-AuNPs was assessed by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, whereas genotoxicity was evaluated by the DNA fragmentation assay. The expression of apoptosis regulatory genes such as p53 and caspase-3 was explored through semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting to evidence apoptotic cell death in HCT-15 cells. Biogenic AM-AuNPs inhibited cell proliferation in HCT-15 cell line with a half maximal inhibitory concentration (IC50) of 20.53 μg/mL at 24 h and 12.03 μg/mL at 48 h of exposure. The altered cell morphology and increased apoptosis due to AM-AuNPs were also evidenced through nuclear DNA fragmentation and upregulated expression of p53 and caspase-3 in HCT-15 cells. Conclusion The AM-AuNPs may exert antiproliferative and genotoxic effects on HCT-15 cells by cell growth suppression and induction of apoptosis mediated by activation of p53 and caspase-3 genes.


Author(s):  
Atsler Luana Lehun ◽  
Amanda Brixner Mendes ◽  
Ricardo Massato Takemoto ◽  
Ana Carolina de Deus Bueno Krawczyk

Sign in / Sign up

Export Citation Format

Share Document