Fate of antibiotics and antibiotic resistance genes in a full-scale restaurant food waste treatment plant: Implications of the roles beyond heavy metals and mobile genetic elements

2019 ◽  
Vol 85 ◽  
pp. 17-34 ◽  
Author(s):  
Pinjing He ◽  
Zhuofeng Yu ◽  
Liming Shao ◽  
Yizhou Zhou ◽  
Fan Lü
2019 ◽  
Vol 378 ◽  
pp. 120716 ◽  
Author(s):  
Meritxell Gros ◽  
Elisabet Marti ◽  
José Luis Balcázar ◽  
Mercè Boy-Roura ◽  
Anna Busquets ◽  
...  

Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 650 ◽  
Author(s):  
Ioanna Zerva ◽  
Ioanna Alexandropoulou ◽  
Maria Panopoulou ◽  
Paraschos Melidis ◽  
Spyridon Ntougias

Wastewater treatment plants (WWTPs) highly contribute to the transmission of antibiotic resistance genes (ARGs) in the environment. In this work, the diversity of ermF, ermB, sul1 and int1-enconding genes was examined in the influent, the mixed liquor and the effluent of a full-scale WWTP. Based on the clones analyzed, similar genotypes were recorded at all process stages. However, distinct genotypes of int1 were responsible for the expression of sul1 and ermF genes in Gammaproteobacteria and Bacteroidetes, respectively. Due to the detection of similar ARGs profiles throughout the biological process, it is concluded that additional treatment is needed for their retention.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fengxia Yang ◽  
Bingjun Han ◽  
Yanru Gu ◽  
Keqiang Zhang

Abstract The overuse or abuse of antibiotics as veterinary medicine and growth promoters accelerates antibiotic resistance, creating a serious threat to public health in the world. Swine liquid manure as an important reservoir of antibiotic resistance genes (ARGs) has received much attention, but little information is known regarding the occurrence, persistence and fate of ARGs-associated mobile genetic elements (MGEs) in swine farms, especially their change patterns and removal in full-scale piggery wastewater treatment systems (PWWTSs). In this study, we searched the presence and distribution of MGEs and associated ARGs in swine farms, and addressed their fate and seasonal variation in full-scale PWWTSs by real-time quantitative PCR (qPCR). Our results revealed class 1 integrons, class 2 integrons and conjugative plasmids were prevalent in pig feces and piggery wastewater. A clear pattern of these MGE levels in swine liquid manure was also observed, i.e., intI1 > intI2 > traA (p < 0.01), and their absolute abundances in winter were all higher than that in summer with 0.07–2.23 logs. Notably, MGEs and ARGs prevailed through various treatment units of PWWTSs, and considerable levels of them were present in the treated effluent discharged from swine farms (up to 101–107 copies/mL for MGEs and 103–108 copies/mL for ARGs). There were significant correlations between most ARG abundance and MGE levels (p < 0.05), such as tetQ and traA (r = 0.775), sul1 and intI1 (r = 0.847), qnrS and inI2 (r = 0.859), suggesting the potential of ARGs—horizontal transfer. Thus the high prevalence and enrichment of MGEs and ARGs occurred in pig feces and piggery wastewater, also implicating that swine liquid manure could be a hotspot for horizontal transfer of ARGs.


Sign in / Sign up

Export Citation Format

Share Document