The Relationship of Mitochondrial Membrane Potential, Reactive Oxygen Species, Adenosine Triphosphate Content, Sperm Plasma Membrane Integrity, and Kinematic Properties in Warmblood Stallions

2020 ◽  
Vol 94 ◽  
pp. 103267
Author(s):  
Vahid Akbarinejad ◽  
Rouhollah Fathi ◽  
Abdolhossein Shahverdi ◽  
Vahid Esmaeili ◽  
Alireza Rezagholizadeh ◽  
...  
2010 ◽  
Vol 76 (24) ◽  
pp. 7918-7924 ◽  
Author(s):  
Ana Mendes-Ferreira ◽  
Belém Sampaio-Marques ◽  
Catarina Barbosa ◽  
Fernando Rodrigues ◽  
Vítor Costa ◽  
...  

ABSTRACT Throughout alcoholic fermentation, nitrogen depletion is one of the most important environmental stresses that can negatively affect the yeast metabolic activity and ultimately leads to fermentation arrest. Thus, the identification of the underlying effects and biomarkers of nitrogen limitation is valuable for controlling, and therefore optimizing, alcoholic fermentation. In this study, reactive oxygen species (ROS), plasma membrane integrity, and cell cycle were evaluated in a wine strain of Saccharomyces cerevisiae during alcoholic fermentation in nitrogen-limiting medium under anaerobic conditions. The results indicated that nitrogen limitation leads to an increase in ROS and that the superoxide anion is a minor component of the ROS, but there is increased activity of both Sod2p and Cta1p. Associated with these effects was a decrease in plasma membrane integrity and a persistent cell cycle arrest at G0/G1 phases. Moreover, under these conditions it appears that autophagy, evaluated by ATG8 expression, is induced, suggesting that this mechanism is essential for cell survival but does not prevent the cell cycle arrest observed in slow fermentation. Conversely, nitrogen refeeding allowed cells to reenter cell cycle by decreasing ROS generation and autophagy. Altogether, the results provide new insights on the understanding of wine fermentations under nitrogen-limiting conditions and further indicate that ROS accumulation, evaluated by the MitoTracker Red dye CM-H2XRos, and plasma membrane integrity could be useful as predictive markers of fermentation problems.


2016 ◽  
Vol 68 (3) ◽  
pp. 620-628 ◽  
Author(s):  
L.S.L.S. Reis ◽  
A.A. Ramos ◽  
A.S. Camargos ◽  
E. Oba

ABSTRACT This study evaluated the plasma membrane integrity, acrosomal membrane integrity, and mitochondrial membrane potential of Nelore bull sperm from early puberty to early sexual maturity and their associations with sperm motility and vigor, the mass motility of the spermatozoa (wave motion), scrotal circumference, and testosterone. Sixty Nelore bulls aged 18 to 19 months were divided into four lots (n=15 bulls/lot) and evaluated over 280 days. Semen samples, collected every 56 days by electroejaculation, were evaluated soon after collection for motility, vigor and wave motion under an optical microscope. Sperm membrane integrity, acrosomal integrity, and mitochondrial activity were evaluated under a fluorescent microscope using probe association (FITC-PSA, PI, JC-1, H342). The sperm were classified into eight integrity categories depending on whether they exhibited intact or damaged membranes, an intact or damaged acrosomal membrane, and high or low mitochondrial potential. The results show that bulls have a low amount of sperm with intact membranes at puberty, and the sperm show low motility, vigor, and wave motion; however, in bulls at early sexual maturity, the integrity of the sperm membrane increased significantly. The rate of sperm membrane damage was negatively correlated with motility, vigor, wave motion, and testosterone in the bulls, and a positive correlation existed between sperm plasma membrane integrity and scrotal circumference. The integrity of the acrosomal membrane was not influenced by puberty. During puberty and into early sexual maturity, bulls show low sperm mitochondrial potential, but when bulls reached sexual maturity, high membrane integrity with high mitochondrial potential was evident.


Author(s):  
Sang-Hee Lee ◽  
Yu-Jin Kim ◽  
Byeong Ho Kang ◽  
Choon-Keun Park

This study investigated the relationship of acrosome reactions and fatty acid composition on fertility in boar sperm. The acrosome reaction of sperm was induced via methyl-beta-cyclodextrin (MBCD), and acrosome reaction, plasma membrane integrity, and fertility were analyzed. The fatty acid composition of the excess acrosome reacted sperm was determined via gas chromatography. The results showed that the acrosome reaction in sperm was induced over 85% of the time by 60 mM MBCD treatment, and the plasma membrane integrity was significantly decreased and was dependent on the MBCD level. The acrosome reacted sperm resulted in significantly higher saturated fatty acids (SFAs) and lower unsaturated fatty acids (PUFAs) than the non-acrosome reaction group. Moreover, the acrosome reacted sperm from 60 mM MBCD significantly decreased in vitro fertility and blastocyst formation relative to non-acrosome reacted sperm, and the acrosome reaction was positively correlated with SFAs and negatively correlated with PUFAs. Of these fatty acids, C22:5n-6 (docosapentaenoic acid [DPA]) and C22:6n-3 (docosahexaenoic acid [DHA]) were directly negatively correlated with the acrosome reaction (r = -0.982 and -0.947, respectively). In conclusion, the excessive acrosome reactions may occur by reducing the PUFAs, which may then dramatically decrease sperm fertility in pigs.


Sign in / Sign up

Export Citation Format

Share Document