Single quadrupole inductively coupled plasma-mass spectrometry for the measurement of fluorine in tea infusions and its health risk assessment

2020 ◽  
Vol 86 ◽  
pp. 103378 ◽  
Author(s):  
Wei Guo ◽  
Xian Lin ◽  
Lanlan Jin ◽  
Shenghong Hu
Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 835 ◽  
Author(s):  
Gabriella Pinto ◽  
Anna Illiano ◽  
Andrea Carpentieri ◽  
Michele Spinelli ◽  
Chiara Melchiorre ◽  
...  

Chemical compounds within tea (Camellia sinensis) are characterized by an extensive heterogeneity; some of them are crucial for their protective and defensive role in plants, and are closely connected to the benefits that the consumption of tea can provide. This paper is mainly focused on the characterization of polyphenols (secondary metabolites generally involved in defense against ultraviolet radiation and aggression by pathogens) and metals, extracted from nine Chinese tea samples, by integrating different mass spectrometry methodologies, LC-MS/MS in multiple reaction monitoring (MRM) and inductively coupled plasma mass spectrometry (ICP-MS). Our approach allowed to identify and compare forty polyphenols differently distributed in tea infusions at various fermentation levels. The exploration of polyphenols with nutraceutical potential in tea infusions can widely benefit especially tea-oriented populations. The worldwide consumption of tea requires at the same time a careful monitoring of metals released during the infusion of tea leaves. Metal analysis can provide the identification of many healthy minerals such as potassium, sodium, calcium, magnesium, differently affected by the fermentation of leaves. Our results allowed us: (i) to draw up a polyphenols profile of tea leaves subjected to different fermentation processes; (ii) to identify and quantify metals released from tea leaves during infusion. In this way, we obtained a molecular fingerprint useful for both nutraceutical applications and food control/typization, as well as for frauds detection and counterfeiting.


Author(s):  
Ana C. Gomes Rosa ◽  
Elaine S. de Pádua Melo ◽  
Ademir S. A. Junior ◽  
Jacqueline M. S. Gondim ◽  
Alexsandro G. de Sousa ◽  
...  

The objective of the present study was to investigate metal(loid)s in soils, in the trunk xylem sap and in the leaves of the Dipteryx alata plant located near the highway with high vehicle traffic in agricultural regions and near landfills, and to assess the transfer of metal(loid)s from soil to plant and possible health risk assessment. Trunk xylem sap, leaves and soil samples were collected at three sites near the highway. The analysis of trace elements was carried out using inductively coupled plasma optical emission spectroscopy (ICP OES). In the three soil sampling sites far from the highway edge, 15 elements were quantified. The concentrations of elements in the soil presented in greater proportions in the distance of 5 m in relation to 20 and 35 m. The metal(loid)s content in the study soil was higher than in other countries. The concentrations of Al, Cu, Fe, Mg, Mn, P, Se and Zn in the xylem sap were much higher than the leaves. The values of transfer factor of P, Mg and Mn from soil to the xylem sap and transfer factor of P from soil to leaf were greater than 1, indicating that the specie have a significant phytoremediation and phytoextraction potential. This plant has a tendency to accumulate As, Cd and Cr in its leaf tissues. The chronic hazard index (HI) values recorded in this study were above 1 for adults and adolescents. It is concluded that the soil, the trunk xylem sap and leaves of this plant are contaminated by heavy metals. Ingestion of the trunk xylem sap of this plant can cause toxicity in humans if ingested in large quantities and in the long term; therefore, its consumption should be avoided.


Author(s):  
Liuquan Zhang ◽  
Yanbin Guo ◽  
Kehong Liang ◽  
Zhongqiu Hu ◽  
Xiangdong Sun ◽  
...  

In this study, 41 common rice varieties and 211 selenium-rich rice varieties from ten representative areas in China were collected in 2017–2019. The selenium contents of rice were analyzed with optimized inductively coupled plasma mass spectrometry (ICP-MS). Selenium concentrations of common rice and selenium-rich rice ranges were 0.81–7.26 and 0.76–180.73 µg/100 g, respectively. The selenium contents in selenium-rich rice from different areas were significantly different (p < 0.001) while those in common rice from different areas were not. The selenium-rich rice in Harbin and Keshan showed the lowest selenium level and those from selenium-rich areas (Enshi and Ankang) were highest. Based on the estimation of the risk assessment software @risk7.0 (Palisade Corporation, New York, NY, USA), the consumption of selenium-rich rice can effectively increase dietary selenium intake for the population. However, the risk index of P95 (Percentile 95) selenium exposure at the tolerable upper intake level for children at 2–14 years old exceeded 100%, with potential risk currently. Therefore, the consumption of selenium-rich rice should be properly monitored for young children and adolescents.


2018 ◽  
Vol 33 (4) ◽  
pp. 642-648 ◽  
Author(s):  
Randa A. Althobiti ◽  
Diane Beauchemin

An on-line leaching method is modified to improve reproducibility, and applied to risk assessment of wheat samples from Saudi Arabia.


2019 ◽  
Author(s):  
Ingo Strenge ◽  
Carsten Engelhard

<p>The article demonstrates the importance of using a suitable approach to compensate for dead time relate count losses (a certain measurement artefact) whenever short, but potentially strong transient signals are to be analysed using inductively coupled plasma mass spectrometry (ICP-MS). Findings strongly support the theory that inadequate time resolution, and therefore insufficient compensation for these count losses, is one of the main reasons for size underestimation observed when analysing inorganic nanoparticles using ICP-MS, a topic still controversially discussed.</p>


Sign in / Sign up

Export Citation Format

Share Document