EGCG maintained Nrf2-mediated redox homeostasis and minimized etoposide resistance in lung cancer cells

2019 ◽  
Vol 62 ◽  
pp. 103553 ◽  
Author(s):  
Suchisnigdha Datta ◽  
Dona Sinha
2019 ◽  
Vol 20 (2) ◽  
pp. 252 ◽  
Author(s):  
Karolien Vanhove ◽  
Elien Derveaux ◽  
Geert-Jan Graulus ◽  
Liesbet Mesotten ◽  
Michiel Thomeer ◽  
...  

Lung cancer cells are well-documented to rewire their metabolism and energy production networks to support rapid survival and proliferation. This metabolic reorganization has been recognized as a hallmark of cancer. The increased uptake of glucose and the increased activity of the glycolytic pathway have been extensively described. However, over the past years, increasing evidence has shown that lung cancer cells also require glutamine to fulfill their metabolic needs. As a nitrogen source, glutamine contributes directly (or indirectly upon conversion to glutamate) to many anabolic processes in cancer, such as the biosynthesis of amino acids, nucleobases, and hexosamines. It plays also an important role in the redox homeostasis, and last but not least, upon conversion to α-ketoglutarate, glutamine is an energy and anaplerotic carbon source that replenishes tricarboxylic acid cycle intermediates. The latter is generally indicated as glutaminolysis. In this review, we explore the role of glutamine metabolism in lung cancer. Because lung cancer is the leading cause of cancer death with limited curative treatment options, we focus on the potential therapeutic approaches targeting the glutamine metabolism in cancer.


2017 ◽  
Vol 5 (1) ◽  
Author(s):  
Lingyan Wang ◽  
Jiayun Hou ◽  
Minghuan Zheng ◽  
Lin Shi

Actinidia Chinensis Planch roots (acRoots) are used to treat many cancers, although the anti-tumor mechanism by which acRoots inhibit cancer cell growth remains unclear. The present study aims at investigating inhibitory effects of acRoots on human lung cancer cells and potential mechanisms. Our data demonstrate that the inhibitory effects of acRoots on lung cancer cells depend on genetic backgrounds and phenotypes of cells. We furthermore found the expression of metabolism-associated gene profiles varied between acRoots-hypersensitive (H460) or hyposensitive lung cancer cells (H1299) after screening lung cancer cells with different genetic backgrounds. We selected retinoic acid receptor beta (RARB) as the core target within metabolism-associated core gene networks and evaluated RARB changes and roles in cells treated with acRoots at different concentrations and timeframes. Hypersensitive cancer cells with the deletion of RARB expression did not response to the treatment with acRoots, while RARB deletion did not change effects of acRoots on hyposensitive cells. Thus, it seems that RARB as the core target within metabolism-associated networks plays important roles in the regulation of lung cancer cell sensitivity to acRoots.


Sign in / Sign up

Export Citation Format

Share Document