Shrinkage of potato slice during drying

2009 ◽  
Vol 94 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Alireza Yadollahinia ◽  
Mehdi Jahangiri
Keyword(s):  
2014 ◽  
Vol 592-594 ◽  
pp. 2728-2732 ◽  
Author(s):  
V.P. Chandramohan ◽  
Prabal Talukdar

Deformation of potato is estimated by experimentally during convective drying. Size of the potato slice is 4cm x 2cm x 2cm. The percentage changes in length, breadth and width of potato are estimated during drying. Shrinkage of the object during drying is estimated. Air velocity chosen for this present analysis is 2 m/s and the range of air temperature is selected as 40 to 70 °C. The product experiences the maximum dimension changes upto 30% in length and 47.5 % in both breadth and width wise. The parameters are non dimensionalised to get generic solution.


2003 ◽  
Vol 29 (1) ◽  
pp. 94-99 ◽  
Author(s):  
Hiroyuki Iyota ◽  
Yotaro Konishi ◽  
Kaori Yoshida ◽  
Nobuya Nishimura ◽  
Tomohiro Nomura ◽  
...  

2019 ◽  
Vol 160 ◽  
pp. 40-50 ◽  
Author(s):  
Somayeh Rezaei ◽  
Nasser Behroozi-Khazaei ◽  
Hosain Darvishi

1962 ◽  
Vol 13 (3) ◽  
pp. 435-442 ◽  
Author(s):  
I. R. MACDONALD ◽  
G. G. LATIES

Plant Disease ◽  
2007 ◽  
Vol 91 (4) ◽  
pp. 464-464 ◽  
Author(s):  
A. M. Vargas ◽  
A. Correa ◽  
D. C. Lozano ◽  
A. González ◽  
A. J. Bernal ◽  
...  

Late blight caused by Phytophthora infestans is the most limiting disease for several species of the Solanaceae family in Colombia. A potential host for P. infestans is Cape gooseberry (Physalis peruviana), a species belonging to the Solanaceae family. Its center of origin is the highlands of Peru and it is grown at approximately 1,500 to 3,000 m above sea level. Cape gooseberry has become an important export fruit in Colombia. Consequently, in the last few years, the area cultivated with Physalis peruviana has increased dramatically. P. infestans was isolated from this crop in the province of Cundinamarca, Colombia. Symptoms caused by this oomycete appeared initially on the leaf margins as small, irregular, necrotic spots that expanded and merged, increasing the necrotic area. These spots had a soft texture resulting from the degradation of plant tissue by the pathogen. On old lesions, white mycelia and sporangia were observed. Affected plants were rarely killed, but under favorable conditions, severe symptoms were observed in leaves and yield was reduced. Ten isolates were obtained from infected tissue by placing a lesion directly on a potato slice in a moist chamber (2). Mycelia grown on the potato slice were then transferred to rye agar. Identification of the pathogen was performed based on morphological characteristics, specifically, sporangiophores of P. infestans are compoundly branched and develop sympodially, with swellings at the points where sporangia were attached (1). Further confirmation was obtained by sequencing the internal transcribed spacer (ITS) regions (GenBank Accession Nos. EF173467-EF173476). Koch's postulates were completed in the laboratory by spray inoculating detached leaves of Cape gooseberry with a zoospore suspension obtained from each of the 10 isolates. Inoculum was prepared by flooding 10-day-old cultures with sterile distilled water to obtain a 104/ml sporangial suspension followed by zoospore induction at 4°C. Leaves were sprayed with this suspension, placed in moist chambers, and incubated at 20°C in the dark. Control leaves were sprayed with sterile distilled water. Two separate leaves were inoculated with each isolate. The pathogen was reisolated from leaf lesions in all cases. The period between infection and the appearance of symptoms ranged from 5 to 7 days. To our knowledge, this is the first report of P. infestans causing damage on Cape gooseberry in Colombia. Chemical control measures are to some extent successfully applied in most regions where solanaceous crops are grown in Colombia. Nevertheless, suitable disease management for Physalis peruviana has not been achieved and further studies on the epidemiology of the disease on this new host are needed. References: (1) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phytopathological Society. St. Paul, MN, 1996. (2) G. A. Forbes et al. Phytopathology 87:375, 1997.


2021 ◽  
pp. 119-130
Author(s):  
Shouyong Xie ◽  
Zhuoran Yang ◽  
Ling Yang ◽  
Shoutai Li ◽  
Jiaoling Wang ◽  
...  

Sweet potato (Ipomoea batatas L.) is an important tuber crop for the daily consumption. Efficient processing must be taken to reduce wastage, and to improve quality and extend shelf period of sweet potato products. Infrared (IR) drying has advantages of high drying rate, good uniformity, and high production efficiency. A laboratory infrared (IR) dryer was developed to study the drying performance of sweet potato slice and its technology optimization in this paper. Single-factor, orthogonal, and temperature-varying experiments of IR drying of sweet potato slice were conducted sequentially. Temperature, slice thickness and steaming time were defined as control factors, and effective moisture diffusivity (EMD), total color change (TCC), specific energy consumption (SEC) and drying time were defined as evaluation indexes. Same weights were applied to the synthetic evaluation index (SEI). Experiment results and statistical analysis showed that: temperature-varying IR drying technology of temperature-decrease mode, under drying conditions of 70ºC (75min) - 65ºC (to end), showed the best drying performance; the optimal combinations for temperature-constant were slice thickness 3 mm, temperature 70ºC, and steaming time 6 min; Midilli et al. model gave the best approximation to experimental data of moisture ratio, with coefficient of determination 0.99933, reduced Chi-square 0.00007, and root mean square error (RMSE) 0.00838; high temperature (75ºC) and large slice thickness (9 mm) were not suitable for IR drying of sweet potato slice. The results of this study can provide references for research on IR drying technology and design of IR dryer for sweet potato slice.


2021 ◽  
Vol 273 ◽  
pp. 07028
Author(s):  
Marko Petković ◽  
Alexander Lukyanov ◽  
Dmitry Rudoy ◽  
Vladimir Kurćubić ◽  
Igor Đurović ◽  
...  

The dehydration parameters (temperature, thickness, and mass load) statistically significantly (p<0.05) affect the thin-layer convective dehydration of potato slices. The slices with thicknesses of 3, 5, and 8 mm were dehydrated as monolayers at different temperatures (30, 50, and 70 °C) and mass load (1.00, 0.63, and 0.38 kg m-2). The results showed that the shortest dehydration time (183 minutes), the smallest energy consumption (0.176 kWh), and the smallest emission of carbon dioxide (0.17 kg) had the dehydration model of potato slices with a 3 mm thickness, 0.38 kg m-2 mass load, dehydrated on the temperature of 70 °C. Dehydration of potato slices of 8 mm slice thickness dehydrated at 70 °C, with 0.38 kg m-2 mass load, showed the highest resistance to mass transfer (the maximum effective moisture diffusivity 2.3761 × 10-7 ± 4.45646 × 10-9 m2 s−1) and the minimum activation energy (27.02 kJ mol-1). Data obtained from these mathematical models could predict and optimize the thin layer dehydration of potato slices, with a dominant influence of temperature and potato slice thickness parameters as variables.


1982 ◽  
Vol 69 (6) ◽  
pp. 1435-1438 ◽  
Author(s):  
Richard M. Shingles ◽  
Geoffrey P. Arron ◽  
Robert D. Hill

Sign in / Sign up

Export Citation Format

Share Document