Deformation of Potato during Convective Drying

2014 ◽  
Vol 592-594 ◽  
pp. 2728-2732 ◽  
Author(s):  
V.P. Chandramohan ◽  
Prabal Talukdar

Deformation of potato is estimated by experimentally during convective drying. Size of the potato slice is 4cm x 2cm x 2cm. The percentage changes in length, breadth and width of potato are estimated during drying. Shrinkage of the object during drying is estimated. Air velocity chosen for this present analysis is 2 m/s and the range of air temperature is selected as 40 to 70 °C. The product experiences the maximum dimension changes upto 30% in length and 47.5 % in both breadth and width wise. The parameters are non dimensionalised to get generic solution.

2016 ◽  
Vol 62 (No. 4) ◽  
pp. 170-178 ◽  
Author(s):  
R.A. Chayjan ◽  
M. Kaveh

A laboratory scale microwave-convection dryer was used to dry the eggplant fruit, applying microwave power in the range of 270–630 W, air temperature in the range of 40–70°C and air velocity in the range of 0.5–1.7 m/s. Six mathematical models were used to predict the moisture ratio of eggplant fruit slices in thin layer drying. The results showed that the Midilli et al. model had supremacy in prediction of turnip slice drying behavior. Minimum and maximum values of effective moisture diffusivity (D<sub>eff</sub>) were 1.52 × 10<sup>–9</sup> and 3.39 × 10<sup>–9</sup> m<sup>2</sup>/s, respectively. Activation energy values of eggplant slices were found between 13.33 and 17.81 kJ/mol for 40°C to 70°C, respectively. The specific energy consumption for drying eggplant slices was calculated at the boundary of 86.47 and 194.37 MJ/kg. Furthermore, in the present study, the application of Artificial Neural Network (ANN) for predicting the drying rate and moisture ratio was investigated. Microwave power, drying air temperature, air velocity and drying time were considered as input parameters for the model.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Younes Bahammou ◽  
Mounir Kouhila ◽  
Haytem Moussaoui ◽  
Hamza Lamsyehe ◽  
Zakaria Tagnamas ◽  
...  

PurposeThis work aims to study the hydrothermal behavior of mortar cement toward certain environmental factors (ambient air temperature and air velocity) based on its drying kinetics data. The objective is to provide a better understanding and controlling the stability of mortar structures, which integrate the sorption phenomenon, drying process, air pressure and intrinsic characteristics. This leads to predict the comportment of mortar structures in relation with main environmental factors and minimize the risk of cracking mortar structures at an early age.Design/methodology/approachThermokinetic study was carried out in natural and forced convection solar drying at three temperatures 20, 30 and 40°C and three air velocities (1, 3 and 5 m.s-1). The empirical and semiempirical models tested successfully describe the drying kinetics of mortar. These models simulate the drying process of water absorbed by capillarity, which is the most common humidity transfer mechanism in building materials and contain parameters with physical significance, which integrate the effect of several environmental factors and intrinsic characteristics of mortar structures.FindingsThe models simulate the drying process of water absorbed by capillarity, which is the most common humidity transfer mechanism in building materials and contain parameters with physical significance, which integrate the effect of several environmental factors and intrinsic characteristics of mortar structures. The average activation energy obtained expressed the temperature effect on the mortar diffusivity. The drying constant and the diffusion coefficient can be used to predict the influence of these environmental factors on the drying behavior of various building materials and therefore on their durability.Originality/valueEvaluation of the effect of several environmental factors and intrinsic characteristics of mortar structures on their durability.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Essaied M Shuia ◽  
Bashir H Arebi ◽  
Ibrahim A abuashe

This paper presents the experimental data that was collected from small pilot solar chimney. The experimental data together with ambient conditions are used to evaluate the performance and study the behavior of the solar chimney; this data will be used for comparison with theoretical models in another paper [part II). The solar chimney prototype was designed and constructed at the Subrata Faculty of Engineering-Libya. The data were collected over several days of June 2011. The solar chimney system contains two main components; the solar collector and the solar chimney. The solar collector root‘ has a circular area of126 m3, the solar chimney is a PVC tube with internal diameter of 0.2 m and the total height of chimney is 9.3 m. The measurements include the intensity of solar radiation inside/outside the collector, temperature and velocity of air at the entrance of the chimney, temperature and speed of wind outside the collector, temperature of the ground inside collector al1d temperature measurements of air at speci?c points at different levels throughout the collector. Solar irradiance was found to affect the chimney temperature and subsequently affects chimney air velocity. The experimental results showed that temperature differences of (30 - 45°C) were recorded between the ambient temperature and that of air inside the chimney in the middle of the day, where the highest air temperature of 73.4°C was recorded at the entrance of the solar chimney. The maximum air velocity of 3.6 m/s was recorded inside the solar chimney at noon on 9 June. Wind speed outside the collector had a small effect on the speed of the air inside the chimney and tends to change slightly, hence, can neglect influence of wind speed on the performance of the system. Also the experimental results indicate that such type of system can trap a suf?cient amount of solar radiation, which elevates the air temperature to a suf?cient value able to generate enough air ?ow to operate a wind turbine to produce electricity; this means the solar chimney system for electricity production can work in the north-western part of Libya in the summer time at least.


2014 ◽  
Vol 627 ◽  
pp. 153-157
Author(s):  
Nawadee Srisiriwat ◽  
Chananchai Wutthithanyawat

The temperature distribution of hot air flow in heating zone of a rectangular duct has been investigated for drying application. The experimental set-up consists of a heater and a fan to generate the hot air flow in the range of temperature from 40 to 100°C and the range of air velocity between 1.20 and 1.57 m/s. An increase of the heater power supply increases the hot air temperature in the heating zone while an increase of air velocity forced by fan decreases the initial temperature at the same power supply provided to generate the hot air flow. The temperature distribution shows that the hot air temperature after transferring through air duct decreases with an increase of the length of the rectangular duct. These results are very important for the air flow temperature and velocity control strategy to apply for heating zone design in the drying process.


2004 ◽  
Vol 67 (3) ◽  
pp. 493-498 ◽  
Author(s):  
R. Y. MURPHY ◽  
K. H. DRISCOLL ◽  
L. K. DUNCAN ◽  
T. OSAILI ◽  
J. A. MARCY

Chicken leg quarters were injected with 0.1 ml of the cocktail culture per cm2 of the product surface area to contain about 7 log(CFU/g) of Salmonella. The inoculated leg quarters were processed in an air/steam impingement oven at an air temperature of 232°C, an air velocity of 1.4 m/s, and a relative humidity of 43%. The endpoint product temperatures were correlated with the cooking times. A model was developed for pathogen thermal lethality up to 7 log(CFU/g) reductions of Salmonella in correlation to the product mass (140 to 540 g) and cooking time (5 to 35 min). The results from this study are useful for validating thermal lethality of pathogens in poultry products that are cooked via impingement ovens.


2006 ◽  
Author(s):  
A. A. Mozafari ◽  
M. H. Saidi ◽  
J. Neyestani ◽  
A. E. Sany

Investigation of air distribution and wind effect on a vehicle body from the point of view of underhood heat transfer effect and proper positioning of vehicle elements such cooler, condenser and engine configuration is an important area for engine researchers and manufacturers as well. In this research, the effect of air velocity distribution and wind effect around a vehicle is simulated and temperature and velocity distribution around engine block which is influenced by the wind effect is investigated. Thermal investigation of the engine compartment components is performed using results of underhood air temperature and velocity distribution. The heat transfer from engine surface is calculated from the engine energy balance in which their input data are obtained from a comprehensive experimental study on a four cylinder gasoline engine.


2020 ◽  
Vol 4 (2) ◽  
pp. 15-18
Author(s):  
Tatiany Carvalho dos Santos ◽  
Richard Stephen Gates ◽  
Ilda De Fátima Ferreira Tinôco ◽  
Sérgio Zolnier ◽  
Letícia Cibele da Silva Ramos Freitas

The objective of this study was to evaluate the effect of different air velocities and temperature at the feeder on mean surface temperature of Japanese quail during the initial stage of laying. The experiment was carried out at the Center for Research in Environment and Agroindustry Systems Engineering (AMBIAGRO), Department of Agricultural Engineering, Federal University of Viçosa, Viçosa/MG, Brazil. A total of 216 Japanese quail in the initial laying phase were placed in four environmental chambers with different temperatures and air velocity, where they were housed and distributed randomly in 2 galvanized wire cages, with 3 partitions each and 27 birds/cage, and a density of approximately 155.6 cm²/bird. The experimental design consisted of randomized blocks with replications of two treatments (air velocity at the feeder: 0, 1, 2, and 3 m/s and air temperature: 17, 23, 29 and 35°C). The mean surface temperature was analyzed by Two-Way ANOVA, with treatment means separated by the Tukey test (P < 0.05). There was a significant positive correlation between air temperature and mean surface temperature (MST). Air velocity is important in removing heat from the surface of birds.


2009 ◽  
Vol 1 (1) ◽  
pp. 1-7
Author(s):  
Ibrahim S. H. ◽  
Teo W.C. ◽  
Baharun A.

Swiftlet farming is a new industry in Sarawak as compared to other long-standing industries such as rubber, palm oil and timber. It is one of the businesses that involved a small capital investment that could generate enormous returns in the future. Swiftlet farming involves the conversion of human-centric building into structures for Swiftlet. The purpose of this conversion is to let Swiftlet for nesting and protect them. The design and construction of such building will also helps to accommodate Swiftlets' population. The nest of the Edible-nest Swiftlet rank amongst the world's most expensive animal products. Therefore, in order to increase the productivity of bird nest, study of the suitable habitat for Swiftlet should be done thoroughly. Environmental factors such as air temperature, surface temperature, relative humidity, air velocity and light intensity are the key factors for a successful Swiftlet farm house. Internal air temperature of building should be maintained from 26°C to 35°C, relative humidity from 80% to 90%, low air velocity and light intensity less than 5 LUX. Proper ventilation and installation of a humidifier could help the building to achieve the desirable range of environment factors. Location of structure will also be considered from direct sunlight direction to reduce the internal temperature. Only licensed Swiftlet farming is legal.


2011 ◽  
Vol 374-377 ◽  
pp. 494-497
Author(s):  
Yi Rong Dang ◽  
An Gui Li ◽  
Hai Guo Yin

This paper presents an energy efficient ventilation method—dam tunnel air handling for hydropower station ventilation. The heat transfer characteristic between supply air and the dam tunnel is studied by model experiment. Supply air velocity, air temperature and dam tunnel surface roughness are chosen as the mainly influencing factors, the air temperature distribution along airflow direction are measured and analyzed in detail. The results show that the heat transfer performance in dam tunnel is improved as the increased of supply air temperature and the dam tunnel surface roughness, or maintained the supply air velocity at a lower level. This experimental study and its results are helpful to develop alternative and efficient systems for hydropower station ventilation.


Sign in / Sign up

Export Citation Format

Share Document