Whole-genome sequencing of Enterococcus hirae CQP3-9, a strain carrying the phenicol–oxazolidinone–tetracycline resistance gene poxtA of swine origin in China

2019 ◽  
Vol 18 ◽  
pp. 71-73 ◽  
Author(s):  
Zhuang-Zhuang Kang ◽  
Chang-Wei Lei ◽  
Tian-Ge Yao ◽  
Yu Zhang ◽  
Yu-Long Wang ◽  
...  
2015 ◽  
Vol 68 (10) ◽  
pp. 835-838 ◽  
Author(s):  
Björn A Espedido ◽  
Borce Dimitrijovski ◽  
Sebastiaan J van Hal ◽  
Slade O Jensen

AimsTo characterise the resistome of a multi-drug resistant Klebsiella pneumoniae (Kp0003) isolated from an Australian traveller who was repatriated to a Sydney Metropolitan Hospital from Myanmar with possible prosthetic aortic valve infective endocarditis.MethodsKp0003 was recovered from a blood culture of the patient and whole genome sequencing was performed. Read mapping and de novo assembly of reads facilitated in silico multi-locus sequence and plasmid replicon typing as well as the characterisation of antibiotic resistance genes and their genetic context. Conjugation experiments were also performed to assess the plasmid (and resistance gene) transferability and the effect on the antibiotic resistance phenotype.ResultsImportantly, and of particular concern, the carbapenem-hydrolysing β-lactamase gene blaNDM-4 was identified on a conjugative IncX3 plasmid (pJEG027). In this respect, the blaNDM-4 genetic context is similar (at least to some extent) to what has previously been identified for blaNDM-1 and blaNDM-4-like variants.ConclusionsThis study highlights the potential role that IncX3 plasmids have played in the emergence and dissemination of blaNDM-4-like variants worldwide and emphasises the importance of resistance gene surveillance.


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Inge Kjærbølling ◽  
Tammi Vesth ◽  
Mikael R. Andersen

Species belonging to the Aspergillus genus are known to produce a large number of secondary metabolites; some of these compounds are used as pharmaceuticals, such as penicillin, cyclosporine, and statin. With whole-genome sequencing, it became apparent that the genetic potential for secondary metabolite production is much larger than expected. As an increasing number of species are whole-genome sequenced, thousands of secondary metabolite genes are predicted, and the question of how to selectively identify novel bioactive compounds from this information arises. To address this question, we have created a pipeline to predict genes involved in the production of bioactive compounds based on a resistance gene hypothesis approach.


2015 ◽  
Vol 59 (8) ◽  
pp. 5022-5025 ◽  
Author(s):  
Yanbin Liu ◽  
Yu Feng ◽  
Wenjing Wu ◽  
Yi Xie ◽  
Xiaohui Wang ◽  
...  

ABSTRACTWe report the first OXA-181-producing strain in China.blaOXA-181was found in sequence type 410 (ST410)Escherichia colistrain WCHEC14828 from a Chinese patient without recent travel history. Genome sequencing and conjugation experiments were performed.blaOXA-181was carried on a 51-kb self-transmissible IncX3 plasmid and was linked withqnrS1, a quinolone resistance gene.blaOXA-181was introduced onto the IncX3 plasmid from a ColE2-type plasmid, and IncX3 plasmids have the potential to mediate the dissemination ofblaOXA-181.


2020 ◽  
Author(s):  
Elena Gómez-Sanz ◽  
Jose Manuel Haro-Moreno ◽  
Slade O. Jensen ◽  
Juan José Roda-García ◽  
Mario López-Pérez

AbstractFour methicillin-resistant Staphylococcus sciuri (MRSS) strains isolated from stranded dogs showed trimethoprim (TMP) resistance, while all staphylococcal TMP resistant dihydrofolate reductase genes (dfr) were negative. An in-depth whole-genome-sequencing approach on strain C2865 was followed for resistome and mobilome profiling, and for comparative genomics with S. sciuri group available genomes. Lack of species host tropism was observed, with MRSS C2865 placed at a separate sub-branch within S. sciuri species, close to the average nucleotide identity to be considered a different species (95-96%). S. sciuri proved a pronounced accessory genome (73% of genes), while MRSS C2865 distinctively harboured the highest total gene number and highest number of unique genes, with 75% associated to the recognised mobilome. A novel multidrug resistance mosaic plasmid (pUR2865-34) with several adaptive, mobilization (oriT mimic) and segregational stability (Type Ib par system) traits and two small single resistance plasmids were identified. Plasmid pUR2865-34 enclosed a novel staphylococcal TMP resistance gene, named dfrE, which shared highest identity with dfr of soil-related Paenibacillus anaericanus (68%). DfrE conferred high-level TMP resistance in S. aureus and Escherichia coli. Database searches revealed that dfrE was formerly denoted (dfr_like) in an Exiguobacterium spp. from a fish-farm sediment and that was present but unnoticed in several staphylococcal and onemacrococcal genomes with different epidemiological backgrounds. Novel chromosomal site-specific mobile islands with resourceful traits were identified, including a multidrug-resistant SCCmec cassette lacking cassette chromosome recombinase (Ccr) genes, a staphylococcal pathogenicity island of the SaPI4 family, and three unrelated siphoviridae prophages, two of which enclosed recombinases with the conserved Ccr-motif. We reveal a novel staphylococcal TMP resistance dfrE gene already present in diverse bacterial backgrounds. We confirm the ubiquity, high genome plasticity and low host tropism of S. sciuri highlighting its role as a resourceful reservoir for evolutionary novel features contributing to its extraordinary versatility and adaptability.Author summaryStaphylococcus spp. are ubiquitous bacteria present in diverse ecological niches, including humans, animals and the environment. They are clinically relevant opportunistic pathogens and are notorious for their ability to acquire antimicrobial resistance (AMR) and virulence properties, resulting in a significant impact for Public Health. Mobile genetic elements (MGEs) play a central role in this adaptation process and are a means to transfer genetic information across bacterial species. Staphylococcus sciuri represents one of the most ancestral species in the genus and has been suggested a reservoir for AMR genes. Here, following a refined whole genome sequencing approach we determined the entire genome of an animal and environment-associated multidrug resistant (MDR) S. sciuri strain uncovering a novel acquired staphylococcal TMP resistance gene already spread among different bacterial species from different epidemiological backgrounds. We also reveal several additional MGEs, including a novel MDR mobilizable plasmid that encloses several adaptive and stabilization features, and novel mobilizable chromosomal islands with resourceful traits, including three unrelated prophages. Together with comparative genomics, we confirm the ubiquity, high intraspecies heterogenicity, genome plasticity and low host tropism of this species, highlighting its role as resourceful reservoir for evolutionary novel features contributing to its extraordinary versatility and adaptability.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hanna Marti ◽  
Sankhya Bommana ◽  
Timothy D. Read ◽  
Theresa Pesch ◽  
Barbara Prähauser ◽  
...  

The Chlamydiaceae are a family of obligate intracellular, gram-negative bacteria known to readily exchange DNA by homologous recombination upon co-culture in vitro, allowing the transfer of antibiotic resistance residing on the chlamydial chromosome. Among all the obligate intracellular bacteria, only Chlamydia (C.) suis naturally integrated a tetracycline resistance gene into its chromosome. Therefore, in order to further investigate the readiness of Chlamydia to exchange DNA and especially antibiotic resistance, C. suis is an excellent model to advance existing co-culture protocols allowing the identification of factors crucial to promote homologous recombination in vitro. With this strategy, we co-cultured tetracycline-resistant with rifamycin group-resistant C. suis, which resulted in an allover recombination efficiency of 28%. We found that simultaneous selection is crucial to increase the number of recombinants, that sub-inhibitory concentrations of tetracycline inhibit rather than promote the selection of double-resistant recombinants, and identified a recombination-deficient C. suis field isolate, strain SWA-110 (1-28b). While tetracycline resistance was detected in field isolates, rifampicin/rifamycin resistance (RifR) had to be induced in vitro. Here, we describe the protocol with which RifR C. suis strains were generated and confirmed. Subsequent whole-genome sequencing then revealed that G530E and D461A mutations in rpoB, a gene encoding for the β-subunit of the bacterial RNA polymerase (RNAP), was likely responsible for rifampicin and rifamycin resistance, respectively. Finally, whole-genome sequencing of recombinants obtained by co-culture revealed that recombinants picked from the same plate may be sibling clones and confirmed C. suis genome plasticity by revealing variable, apparently non-specific areas of recombination.


PLoS ONE ◽  
2018 ◽  
Vol 13 (8) ◽  
pp. e0201882 ◽  
Author(s):  
Fernanda Almeida ◽  
Amanda Aparecida Seribelli ◽  
Marta Inês Cazentini Medeiros ◽  
Dália dos Prazeres Rodrigues ◽  
Alessandro de MelloVarani ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Kexin Zhou ◽  
Jialei Liang ◽  
Xu Dong ◽  
Peiyao Zhang ◽  
Chunlin Feng ◽  
...  

Multidrug-resistant bacteria from different sources have been steadily emerging, and an increasing number of resistance mechanisms are being uncovered. In this work, we characterized a novel resistance gene named aac(2′)-If from an isolate of a novel Providencia species, Providencia wenzhouensis R33 (CCTCC AB 2021339). Susceptibility testing and enzyme kinetic parameter analysis were conducted to determine the function of the aminoglycoside 2′-N-acetyltransferase. Whole-genome sequencing and comparative genomic analysis were performed to elucidate the molecular characteristics of the genome and the genetic context of the resistance gene-related sequences. Among the functionally characterized resistance genes, AAC(2′)-If shares the highest amino acid sequence identity of 70.79% with AAC(2′)-Ia. AAC(2′)-If confers resistance to several aminoglycoside antibiotics, showing the highest resistance activity against ribostamycin and neomycin. The recombinant strain harboring aac(2′)-If (pUCP20-aac(2′)-If/DH5α) showed 256- and 128-fold increases in the minimum inhibitory concentration (MIC) levels to ribostamycin and neomycin, respectively, compared with those of the control strains (DH5α and pUCP20/DH5α). The results of the kinetic analysis of AAC(2′)-If were consistent with the MIC results of the cloned aac(2′)-If with the highest catalytic efficiency for ribostamycin (kcat/Km ratio = [3.72 ± 0.52] × 104 M–1⋅s–1). Whole-genome sequencing demonstrated that the aac(2′)-If gene was located on the chromosome with a relatively unique genetic environment. Identification of a novel aminoglycoside resistance gene in a strain of a novel Providencia species will help us find ways to elucidate the complexity of resistance mechanisms in the microbial population.


Sign in / Sign up

Export Citation Format

Share Document