scholarly journals Antimicrobial resistance and virulence factors profile of Salmonella spp. and Escherichia coli isolated from different environments exposed to anthropogenic activity

2020 ◽  
Vol 22 ◽  
pp. 578-583
Author(s):  
Michelle M. Balbin ◽  
Dawn Hull ◽  
Chloe Guest ◽  
Lauren Nichols ◽  
Robert Dunn ◽  
...  
2011 ◽  
Vol 5 (7) ◽  
pp. 823-830 ◽  
Author(s):  
Bi Kim Hyo ◽  
Baek Hyun ◽  
Lee SooJin ◽  
Jang YangHo ◽  
Jung SukChan ◽  
...  

2015 ◽  
Vol 35 (9) ◽  
pp. 775-780 ◽  
Author(s):  
Marcos R.A. Ferreira ◽  
Talícia dos S. Silva ◽  
Ariel E. Stella ◽  
Fabricio R. Conceição ◽  
Edésio F. dos Reis ◽  
...  

Abstract: In order to detect virulence factors in Shiga toxin-producing Escherichia coli (STEC) isolates and investigate the antimicrobial resistance profile, rectal swabs were collected from healthy sheep of the races Santa Inês and Dorper. Of the 115 E. coli isolates obtained, 78.3% (90/115) were characterized as STEC, of which 52.2% (47/90) carried stx1 gene, 33.3% (30/90) stx2 and 14.5% (13/90) both genes. In search of virulence factors, 47.7% and 32.2% of the isolates carried the genes saa and cnf1. According to the analysis of the antimicrobial resistance profile, 83.3% (75/90) were resistant to at least one of the antibiotics tested. In phylogenetic classification grouped 24.4% (22/90) in group D (pathogenic), 32.2% (29/90) in group B1 (commensal) and 43.3% (39/90) in group A (commensal). The presence of several virulence factors as well as the high number of multiresistant isolates found in this study support the statement that sheep are potential carriers of pathogens threatening public health.


2016 ◽  
Vol 46 ◽  
pp. 1908-1914 ◽  
Author(s):  
Barbara KOT ◽  
Jolanta WICHA ◽  
Agata GRUŻEWSKA ◽  
Małgorzata PIECHOTA ◽  
Katarzyna WOLSKA ◽  
...  

2007 ◽  
Vol 53 (7) ◽  
pp. 919-924 ◽  
Author(s):  
Kavitha Boinapally ◽  
Xiuping Jiang

The objective of this study was to assess and differentiate wild-caught South Carolina (SC) shrimps from imported shrimps on the basis of microbiological analysis. Seven wild-caught SC shrimp and 13 farm-raised imported shrimp samples were analyzed. Total plate counts from wild-caught shrimp samples ranged from 4.3 to 7.0 log10 CFU/g, whereas counts from imported shrimp samples ranged from 3.2 to 5.7 log10 CFU/g. There was no difference (P > 0.05) between total bacterial counts of wild-caught SC shrimp and farm-raised imported shrimp. However, the percentages of bacteria with reduced susceptibility towards ceftriaxone and tetracycline were higher (P < 0.05) for farm-raised shrimp than for wild-caught samples. Salmonella spp. detected only in one farm-raised sample was resistant to ampicillin, ceftriaxone, gentamicin, streptomycin, and trimethoprim. Vibrio vulnificus was detected in both wild-caught and farm-raised shrimp samples; however, only the isolate from farm-raised shrimp was resistant to nalidixic acid and trimethoprim. Escherichia coli detected in one wild-caught sample was resistant to ampicillin. Both Listeria spp. and Salmonella spp. were absent with wild-caught SC samples. Therefore, the presence of more ceftriaxone- and tetracycline-resistant bacteria and the observed antimicrobial resistance phenotypes of isolates from the imported shrimp may reflect the possible use of antibiotics in raising shrimp in those countries.


2011 ◽  
Vol 62 (2) ◽  
pp. 623-628 ◽  
Author(s):  
Eleni G. Iossifidou ◽  
Amin Abrahim ◽  
Nikolaos D. Soultos ◽  
Eleftherios A. Triantafillou ◽  
Pavlos A. Koidis

2020 ◽  
Vol 6 (1) ◽  
pp. 13
Author(s):  
Nelson Phiri ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Ntazana N. Sinyangwe ◽  
Luke J. Banda ◽  
...  

Objective: Salmonella species and Escherichia coli are major bacterial enteropathogens of worldwide public health importance that cause devastating foodborne diseases, thereby contributing to increased human morbidity and mortality. Both pathogens have also been found to contribute towards the spread of antimicrobial resistance through the food chain, especially in poultry. This study aimed to determine the occurrence of antibiotic-resistant Salmonella spp. and E. coli in broiler chickens at farm level, abattoirs, and open markets in selected districts of Zambia.Methods: A cross-sectional study was undertaken in seven districts of Zambia to determine the resistance profiles of Salmonella spp. and E. coli obtained from broiler chickens at farms, abattoirs, and open markets. A total of 470 samples were collected which include; litter, cloacal swabs, and carcass swabs. Samples were inoculated into buffered peptone water and incubated for 24 hours then sub-cultured onto MacConkey and Xylose Lysine Deoxycholate agar plates. Identification of Salmonella spp. and E. coli was done using the API-20E kit and confirmation by 16S rDNA sequencing. Confirmed isolates were tested against a panel of 09 antibiotics using the Kirby-Bauer disc diffusion method and interpreted according to the Clinical Laboratory Standards Institute guidelines. Data analysis of the antibiotic sensitivity test results was done using WHONET 2018 software.Results: Overall, 4 Salmonella spp. and 280 E. coli were isolated. One of the Salmonella spp. was resistant to ampicillin (25%), amoxicillin/clavulanic acid (25%), and cefotaxime (25%). E. coli antibiotic resistance was highest to tetracycline (81.4%) and 100% susceptibility to imipenem. The antibiotic susceptibility profile revealed 75.7% (237/280) multidrug-resistant (MDR). The highest MDR profile was observed in 8.2% (23/280) isolates in which 6 out of the 9 classes of antibiotics tested were resistant. Out of the 280 isolates, 11.4% (32/280) exhibited Extensive Drug resistance (XDR).Conclusion: The study found antimicrobial resistance to E. coli and Salmonella spp. in market-ready broiler chickens which were resistant to important antibiotics and is of public health concern.


Sign in / Sign up

Export Citation Format

Share Document