scholarly journals Antibiotic-resistant Salmonella species and Escherichia coli in broiler chickens from farms, abattoirs, and open markets in selected districts of Zambia

2020 ◽  
Vol 6 (1) ◽  
pp. 13
Author(s):  
Nelson Phiri ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Ntazana N. Sinyangwe ◽  
Luke J. Banda ◽  
...  

Objective: Salmonella species and Escherichia coli are major bacterial enteropathogens of worldwide public health importance that cause devastating foodborne diseases, thereby contributing to increased human morbidity and mortality. Both pathogens have also been found to contribute towards the spread of antimicrobial resistance through the food chain, especially in poultry. This study aimed to determine the occurrence of antibiotic-resistant Salmonella spp. and E. coli in broiler chickens at farm level, abattoirs, and open markets in selected districts of Zambia.Methods: A cross-sectional study was undertaken in seven districts of Zambia to determine the resistance profiles of Salmonella spp. and E. coli obtained from broiler chickens at farms, abattoirs, and open markets. A total of 470 samples were collected which include; litter, cloacal swabs, and carcass swabs. Samples were inoculated into buffered peptone water and incubated for 24 hours then sub-cultured onto MacConkey and Xylose Lysine Deoxycholate agar plates. Identification of Salmonella spp. and E. coli was done using the API-20E kit and confirmation by 16S rDNA sequencing. Confirmed isolates were tested against a panel of 09 antibiotics using the Kirby-Bauer disc diffusion method and interpreted according to the Clinical Laboratory Standards Institute guidelines. Data analysis of the antibiotic sensitivity test results was done using WHONET 2018 software.Results: Overall, 4 Salmonella spp. and 280 E. coli were isolated. One of the Salmonella spp. was resistant to ampicillin (25%), amoxicillin/clavulanic acid (25%), and cefotaxime (25%). E. coli antibiotic resistance was highest to tetracycline (81.4%) and 100% susceptibility to imipenem. The antibiotic susceptibility profile revealed 75.7% (237/280) multidrug-resistant (MDR). The highest MDR profile was observed in 8.2% (23/280) isolates in which 6 out of the 9 classes of antibiotics tested were resistant. Out of the 280 isolates, 11.4% (32/280) exhibited Extensive Drug resistance (XDR).Conclusion: The study found antimicrobial resistance to E. coli and Salmonella spp. in market-ready broiler chickens which were resistant to important antibiotics and is of public health concern.

2020 ◽  
Author(s):  
Nelson Phiri ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Ntazana N. Sinyangwe ◽  
Luke John Banda ◽  
...  

AbstractSalmonella species and Escherichia coli are major bacterial enteropathogens of global public health importance that cause foodborne diseases, thereby contributing to increased human morbidity and mortality. Both pathogens have also been found to contribute towards the spread of antimicrobial resistance through the food chain, especially in poultry. The aim of this study was to determine the occurrence of antibiotic-resistant Salmonella sp. and E. coli in broiler chickens at farm level, abattoirs and open markets in selected districts of Zambia. A cross-sectional study was undertaken in seven districts of Zambia to determine the resistance profiles of Salmonella sp. and E. coli obtained from broiler chickens at farms, abattoirs and open markets. A total of 470 samples were collected, including litter, cloacal swabs and carcass swabs. Samples were inoculated into buffered peptone water, sub-cultured onto MacConkey and Xylose Lysine Deoxycholate agar plates. Identification of Salmonella sp. and E. coli was done using the API-20E kit and confirmation by 16S rDNA sequencing. Confirmed isolates were tested against a panel of 10 antibiotics using the Kirby-Bauer disc-diffusion method and interpreted according to the Clinical Laboratory Standards Institute guidelines. Analysis of the antibiotic susceptibility test results was done using WHONET 2018 software. Overall, 4 Salmonella spp. and 280 E. coli were isolated. One of the Salmonella sp. was resistant to ampicillin (25%), amoxicillin/clavulanic acid (25%) and cefotaxime (25%). E. coli antibiotic resistance was highest to tetracycline (81.4%) and lowest to imipenem (0.7%). The antibiotic susceptibility profile revealed 55% (154/280) multidrug resistant E. coli, with the highest multidrug resistance profile (20.7%) in the ampicillin-tetracycline-trimethoprim/sulfamethoxazole drug combination. Furthermore, 4.3% (12/280) of the isolates showed Extensive Drug resistance. The levels of antimicrobial resistance to E. coli and Salmonella observed in market-ready chickens is of public health concern.


2019 ◽  
Author(s):  
Elizabeth Muligisa Muonga ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Geoffrey Kwenda ◽  
Bernard Hang'ombe ◽  
...  

Abstract Background Antimicrobial resistance (AMR) of foodborne pathogens is of public health concern, especially in developing countries like Zambia. This study was undertaken to determine the resistance profiles of Escherichia coli ( E. coli ) and Salmonella isolated from dressed broiler chickens purchased from open markets and supermarkets in Zambia.Results A total of 189 E. coli and five Salmonella isolates were isolated. Identification and confirmation of the isolates was done using Analytical Profile Index (API 20E) (Biomerieux ® ) and 16S rRNA sequencing. Antimicrobial susceptibility tests (AST) were performed using the Kirby Bauer disk diffusion technique using a panel of 10 different antibiotics and multiplex PCR was used to determine the presence of three target genes encoding for resistance: tetA, Sul1 and CTXM. AST results were entered and analyzed in WHONET 2018 software. A total of 189 E. coli and five Salmonella isolates were identified. Among the E. coli isolates, Tetracycline recorded the highest resistance of 79.4%, followed by Ampicillin 51.9%, Trimethoprim/Sulfamethoxazole 49.7%, Nalidixic Acid 24.3%, Chloramphenicol 16.4%, Cefotaxime 16.4%, Ciprofloxacin 10.1%, Colistin 7.4%, Amoxicillin/Clavulanic acid 6.9%, and Imipenem 1.1%. Two of the five Salmonella isolates were resistant to at least one antibiotic. Forty- seven (45.2%) of the isolates possessed at least one of the targeted resistance genes.Conclusion This study has demonstrated the presence of AMR E. coli and Salmonella on raw broiler chickens from both open markets and supermarkets. Such resistance is of public health concern and measures need to be put in place to regulate the use of these antimicrobials in poultry production.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Pouya Reshadi ◽  
Fatemeh Heydari ◽  
Reza Ghanbarpour ◽  
Mahboube Bagheri ◽  
Maziar Jajarmi ◽  
...  

Abstract Background Transmission of antimicrobial resistant and virulent Escherichia coli (E. coli) from animal to human has been considered as a public health concern. This study aimed to determine the phylogenetic background and prevalence of diarrheagenic E. coli and antimicrobial resistance in healthy riding-horses in Iran. In this research, the genes related to six main pathotypes of E. coli were screened. Also, genotypic and phenotypic antimicrobial resistance against commonly used antibiotics were studied, then phylo-grouping was performed on all the isolates. Results Out of 65 analyzed isolates, 29.23 % (n = 19) were determined as STEC and 6.15 % (n = 4) as potential EPEC. The most prevalent antimicrobial resistance phenotypes were against amoxicillin/clavulanic acid (46.2 %) and ceftriaxone (38.5 %). blaTEM was the most detected resistance gene (98.4 %) among the isolates and 26.15 % of the E. coli isolates were determined as multi-drug resistant (MDR). Three phylo-types including B1 (76.92 %), A (13.85 %) and D (3.08 %) were detected among the isolates. Conclusions Due to the close interaction of horses and humans, these findings would place emphasis on the pathogenic and zoonotic potential of the equine strains and may help to design antimicrobial resistance stewardship programs to control the dissemination of virulent and multi-drug resistant E. coli strains in the community.


2019 ◽  
Vol 12 (7) ◽  
pp. 984-993 ◽  
Author(s):  
Md. Abdus Sobur ◽  
Abdullah Al Momen Sabuj ◽  
Ripon Sarker ◽  
A. M. M. Taufiqur Rahman ◽  
S. M. Lutful Kabir ◽  
...  

Aim: The present study was carried out to determine load of total bacteria, Escherichia coli and Salmonella spp. in dairy farm and its environmental components. In addition, the antibiogram profile of the isolated bacteria having public health impact was also determined along with identification of virulence and resistance genes by polymerase chain reaction (PCR) under a one-health approach. Materials and Methods: A total of 240 samples of six types (cow dung - 15, milk - 10, milkers' hand wash - 10, soil - 10 water - 5, and vegetables - 10) were collected from four dairy farms. For enumeration, the samples were cultured onto plate count agar, eosin methylene blue, and xylose-lysine deoxycholate agar and the isolation and identification of the E. coli and Salmonella spp. were performed based on morphology, cultural, staining, and biochemical properties followed by PCR. The pathogenic strains of E. coli stx1, stx2, and rfbO157 were also identified through PCR. The isolates were subjected to antimicrobial susceptibility test against 12 commonly used antibiotics by disk diffusion method. Detection of antibiotic resistance genes ereA, tetA, tetB, and SHV were performed by PCR. Results: The mean total bacterial count, E. coli and Salmonella spp. count in the samples ranged from 4.54±0.05 to 8.65±0.06, 3.62±0.07 to 7.04±0.48, and 2.52±0.08 to 5.87±0.05 log colony-forming unit/g or ml, respectively. Out of 240 samples, 180 (75%) isolates of E. coli and 136 (56.67%) isolates of Salmonella spp. were recovered through cultural and molecular tests. Among the 180 E. coli isolates, 47 (26.11%) were found positive for the presence of all the three virulent genes, of which stx1 was the most prevalent (13.33%). Only three isolates were identified as enterohemorrhagic E. coli. Antibiotic sensitivity test revealed that both E. coli and Salmonella spp. were found highly resistant to azithromycin, tetracycline, erythromycin, oxytetracycline, and ertapenem and susceptible to gentamycin, ciprofloxacin, and imipenem. Among the four antibiotic resistance genes, the most observable was tetA (80.51-84.74%) in E. coli and Salmonella spp. and SHV genes were the lowest one (22.06-25%). Conclusion: Dairy farm and their environmental components carry antibiotic-resistant pathogenic E. coli and Salmonella spp. that are potential threat for human health which requires a one-health approach to combat the threat.


2021 ◽  
Vol 22 (2) ◽  
pp. 223-233
Author(s):  
I.H. Igbinosa ◽  
C. Chiadika

Background: Most Escherichia coli strains are harmless commensals, but some serotypes can cause serious food poisoning in their hosts, and are infrequently responsible for product recalls due to food contamination. The present study was carried out to determine the occurrence of E. coli O157:H7 and other E. coli strains from raw and fermented (nono) milk in Benin City, Nigeria.Methodology: A total of 66 (33 raw and 33 nono) milk samples were obtained from retailers from 3 different stations in Aduwawa market, Benin City, Nigeria between January and June, 2017. Samples were analysed by cultural methods for faecal coliforms using M-Fc agar, E. coli using Chromocult coliform agar, and E. coli O157:H7 using sorbitol MacConkey agar supplemented with cefixime and potassium tellurite. Presumptive E. coli andE. coli O157:H7 isolates were confirmed by polymerase chain reaction (PCR) assay using specific primers. Antimicrobial susceptibility profile of confirmed isolates was performed using the Kirby-Bauer disk diffusion method, with zones of inhibition interpreted according to the guidelines of Clinical and Laboratory Standards Institute (CLSI). Data were  analysed using the SPSS version 21.0.Results: From the 66 nono and raw milk samples assessed in this study, all (100%) were phenotypically positive for E. coli O157:H7. A total of 19 E. coli O157:H7 and 41 other strains of E. coli were confirmed by PCR. The resistance profile of the 19 E. coli O157:H7 isolates showed 100% (19/19) resistance to penicillin G and ampicillin; 94.7% (18/19) to chloramphenicol; 89.5% (17/19) to erythromycin; and 78.9% (15/19) to sulfamethoxazole and oxytetracycline, while the sensitivity profile showed that 100% (19/19) E. coli O157:H7 isolates were sensitive to gentamicin and ofloxacin. The resistance profile of other 41 E. coli isolates showed 100% (41/41) resistance to penicillin G and ampicillin; 97.6% (40/41) to chloramphenicol; and 92.7% (38/41) to erythromycin, while 97.6% (40/41) were sensitive to  gentamicin and kanamycin. Ten E. coli O157:H7 isolates (52.6%) showed extensive drug resistance pattern to 11 antibiotics in 7  antimicrobial classes with multiple antibiotic resistance (MAR) index of 0.46.Conclusion: Findings from the present study clearly indicated that the safety and quality of fresh and fermented milk were not satisfactory and could be of public health concern. Key words: Nono, Escherichia coli; Pathotypes, Resistance index, Public health, Milk


2020 ◽  
Author(s):  
Elizabeth Muligisa Muonga ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Geoffrey Kwenda ◽  
Bernard Hang'ombe ◽  
...  

Abstract BackgroundAntimicrobial resistance (AMR) of foodborne pathogens is of public health concern, especially in developing countries such as Zambia. This study was undertaken to determine the antimicrobial resistance profiles of Escherichia coli ( E. coli ) and Salmonella isolated from raw retail broiler chicken carcasses purchased from open and supermarkets in Zambia.ResultsA total of 189 E. coli and five Salmonella isolates were isolated. Identification and confirmation of the isolates were done using Analytical Profile Index (API 20E) (Biomerieux ® ) and 16S rRNA sequencing. Antimicrobial susceptibility tests (AST) were performed using the Kirby Bauer disk diffusion technique using a panel of 10 antibiotics. Multiplex PCR was used to determine the presence of three target genes encoding for resistance: tet A, Sul 1 and bla CTX-M . WHONET 2018 software was used to analyse AST results. The E. coli isolates were mostly resistant to tetracycline (79.4%), ampicillin (51.9%), and trimethoprim/sulfamethoxazole (49.7%). Two of the five Salmonella isolates were resistant to at least one antibiotic. Forty- seven (45.2%) of the 104 isolates that were screened for the presence of the resistant genes possessed at least one of the targeted resistance genes.ConclusionThis study has demonstrated the presence of AMR E. coli and Salmonella on raw retail broiler chicken carcasses from open and supermarkets, which is of public health concern.


2016 ◽  
pp. 21-24
Author(s):  
Md Kamruzzaman Siddiqui ◽  
Nazma Khatoon ◽  
Pravas Chandra Roy

Antimicrobial resistance in both pathogenic and commensal bacteria is increasing steadily. Failure of antibiotic resistant bacteria containment is responsible for this expansion. Healthcare effluent acts as the store house of harmful infectious pathogens. Potential health risk includes spreading of diseases by these pathogens and wide dissemination of antimicrobial resistance genes. The present study was carried out to investigate the multiple-drug resistance among the bacterial strains that were isolated and identified from the effluents of Jessore Medical College Hospital & Jessore Queen’s hospital private limited. Identified bacteria were E. coli , Klebsiella spp., Enterobacter spp., Proteus vulgaris and Salmonella spp.. Occurrence of E. coli and Enterobacter spp. were found to have the highest percentages and present in majority of the samples. The identified organisms antibiotic resistant pattern were analyzed by agar disc diffusion method against 6 antibiotics. Results of antibiotic susceptibility test showed that all of the isolates were multi-drug resistant (e”4). From the study, we observed that 75% of the isolates were resistant to amoxicillin, followed by Ampicillin (64%), Chloramphenicol (31%), Gentamycin (29%), Nitrofurantoin (27%) and least resistant being Ciprofloxacin 23%. Among the isolates Salmonella spp. were showed highest rate of resistance against all the used antibiotics. The result denotes that, the identified bacteria have been well exposed to the tested antimicrobials and they have established mechanisms to avoid them. Therefore, proper waste water treatment plant should be established to diminish the risk of disseminating multiple drug resistant microorganisms for the safeguard of public health.Bangladesh J Microbiol, Volume 32, Number 1-2,June-Dec 2015, pp 21-24


2020 ◽  
Author(s):  
Elizabeth Muligisa Muonga ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Geoffrey Kwenda ◽  
Bernard Hang'ombe ◽  
...  

Abstract Background Antimicrobial resistance (AMR) of foodborne pathogens is of public health concern, especially in developing countries such as Zambia. This study was undertaken to determine the antimicrobial resistance profiles of Escherichia coli (E. coli) and Salmonella isolated from raw retail broiler chicken carcasses purchased from open and supermarkets in Zambia.Results A total of 189 E. coli and five Salmonella isolates were isolated. Identification and confirmation of the isolates were done using Analytical Profile Index (API 20E) (Biomerieux®) and 16S rRNA sequencing. Antimicrobial susceptibility tests (AST) were performed using the Kirby Bauer disk diffusion technique using a panel of 10 antibiotics. Multiplex PCR was used to determine the presence of three target genes encoding for resistance: tetA, Sul1 and blaCTX-M. WHONET 2018 software was used to analyse AST results. The E. coli isolates were mostly resistant to tetracycline (79.4%), ampicillin (51.9%), and trimethoprim/sulfamethoxazole (49.7%). Two of the five Salmonella isolates were resistant to at least one antibiotic. Forty- seven (45.2%) of the 104 isolates that were screened for the presence of the resistant genes possessed at least one of the targeted resistance genes.Conclusion This study has demonstrated the presence of AMR E. coli and Salmonella on raw retail broiler chicken carcasses from open and supermarkets, which is of public health concern.


2016 ◽  
Vol 4 (2) ◽  
pp. 211
Author(s):  
Iyekhoetin Matthew Omoruyi ◽  
Ufuoma Akpezi Orieruo

Ready-to-eat (RTE) salads sold in Nigeria are poorly delineated sources of human exposure to pathogenic microorganisms. In this study, we investigated the current situation in Benin City, Edo state, Nigeria. Twenty-four samples of RTE salad were obtained from different open markets, and the presence of Shiga toxin-producing Escherichia coli (STEC) and other enterobacteriaceae were determined by established methods using both selective and chromogenic agars. All RTE salad samples were found to habour Escherichia coli while 16.7% were further confirmed for the presence of STEC. Other Enterobacteriaceae present included Klebsiella spp, Proteus spp, Enterobacter spp, Serratia spp and Salmonella spp. The antibiogramic profile revealed that all bacterial isolates obtained were resistant to augmentin and amoxicillin while only 11.1% were resistant to ciprofloxacin and ofloxacin. The percentage resistance for the Shiga-toxin producing strains of E. coli was 60% while Serratia showed resistance to all the antibiotics used. The results of this study showed that RTE salad sold in Benin City, Edo State, Nigeria could be a source of public health concern, and effort should be made to avert possible outbreak.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 780
Author(s):  
Lorena Varriale ◽  
Ludovico Dipineto ◽  
Tamara Pasqualina Russo ◽  
Luca Borrelli ◽  
Violante Romano ◽  
...  

Antimicrobial resistance is a public health concern worldwide and it is largely attributed to the horizontal exchange of transferable genetic elements such as plasmids carrying integrons. Several studies have been conducted on livestock showing a correlation between the systemic use of antibiotics and the onset of resistant bacterial strains. In contrast, although companion birds are historically considered as an important reservoir for human health threats, little information on the antimicrobial resistance in these species is available in the literature. Therefore, this study was aimed at evaluating the antimicrobial resistance of Escherichia coli and Pseudomonasaeruginosa isolated from 755 companion birds. Cloacal samples were processed for E. coli and P. aeruginosa isolation and then all isolates were submitted to antimicrobial susceptibility testing. P. aeruginosa was isolated in 59/755 (7.8%) samples, whereas E. coli was isolated in 231/755 (30.7%) samples. Most strains showed multidrug resistance. This study highlights that companion birds may act as substantial reservoirs carrying antimicrobial resistance genes which could transfer directly or indirectly to humans and animals, and from a One Health perspective this risk should not be underestimated.


Sign in / Sign up

Export Citation Format

Share Document