Economic damages from a worst-case oil spill in the Straits of Mackinac

2019 ◽  
Vol 45 (6) ◽  
pp. 1130-1141 ◽  
Author(s):  
Richard T. Melstrom ◽  
Carson Reeling ◽  
Latika Gupta ◽  
Steven R. Miller ◽  
Yongli Zhang ◽  
...  
1981 ◽  
Vol 1981 (1) ◽  
pp. 173-181
Author(s):  
W. M. Pistruzak

ABSTRACT Canadian Marine Drilling (Canmar), a wholly owned subsidiary of Dome Petroleum Ltd., is conducting exploratory drilling in the Beaufort Sea with the objective of on-stream production by the mid-1980s. If a major oil well blow-out should occur, and the probability of such an occurrence is very small, (Bercha, 1977), oil would be released to the surface of the sea until a relief well could be drilled or the well sealed itself. The relief well could be drilled during the same drill season, or, in the worst case, it might not be completed until the following year. Therefore, Dome could be faced with the problem of cleaning up an oil spill during open-water, freeze-up, and winter or spring break-up conditions. To this end, Dome has developed a contingency plan, based on, and updated according to, its ongoing research and development programs to deal with an oil spill during each of the above-mentioned periods of time. To date, Dome has invested approximately $10 million in its research and development programs. This paper deals with Dome's research and development in oil spill countermeasures for its present ongoing exploration activities and its future production and transportation systems.


2021 ◽  
Author(s):  
Fabrizio Zausa ◽  
Luigi Besenzoni ◽  
Alessandro Caia ◽  
Seda Mizrak

Abstract The disaster of Macondo of 2010 changed the rules in reliability and safety standards during drilling operations. New regulations were developed in order to improve the control level on blowout risk, and all upstream operators adopted innovative technologies capable to reduce the potential risk of uncontrolled release, either by decreasing its frequency of occurrence or the expected impacts. The objective of this paper is to present a Quantitative Risk Analysis (QRA) of well blowout and measure the beneficial contribution of intervention technologies in terms of expected reduction of spill volume and associated costs. The QRA is applied to any kind of well operation (drilling, completion, workover, light intervention) and well type. The methodology relies upon different risk analysis techniques able to quantify the residual blowout risk, as well as the mitigation provided by each technology. Through Fault Tree Analysis (FTA), a value of blowout probability is calculated for each well operation. The initial blowout condition is associated with a blowout flow rate, calculated with fluid dynamic computational models depending on well flow path and release point into the environment. The evolution of each release scenario is then studied with the use of Event Tree Analysis (ETA), where a set of events, able to reduce or stop the flow, are considered with their probability of success and occurrence time (well bridging, water coning, surface intervention through killing/capping techniques, relief well operations). The value of each intervention is estimated through Decision Tree Analysis (DTA), calculating the amount of spill volume reduction and avoided spill costs. Results of spill volume and cost reduction are calculated for a set of specific wells, considering the application of killing/capping systems as well as Eni innovative technologies. The benefit of these interventions is measured in terms of Expected Monetary Value (EMV) in relation to a potential release extinguished by a relief well, which is the decisive intervention to stop the blowout, considered as the worst case scenario. Surface interventions with killing/capping techniques are the major contributors to the reduction of blowout impacts, and all additional measures which can be adopted should act in the fastest way possible before the arrival of heavy capping stack system. The main innovative contribution of the proposed QRA methodology is the association of an expected economic value to post-blowout mitigation techniques, which takes into account all possible uncertainties related to their success and intervention time. Moreover, by evaluating an economic impact of the residual spill cost, it is possible to prioritize and increase the overall efficiency of the oil spill response plan for each operational and geographical context, and improve the control on blowout risk mitigation process.


2001 ◽  
Vol 2001 (1) ◽  
pp. 559-567 ◽  
Author(s):  
Edward S. Gilfillan ◽  
David S. Page ◽  
Keith R. Parker ◽  
Jerry M. Neff ◽  
Paul D. Boehm

ABSTRACT A shoreline ecology program was performed in Prince William Sound (PWS), Alaska in 1990 and 1991 (1 and 2 years after the Exxon Valdez oil spill, EVOS) to assess the fate and effects of the oil in the intertidal zone. Major components of the study were repeated in 1998 and 1999. This update included a sediment-sampling program at formerly oiled “worst-case” boulder/cobble (B/C) sites and randomly chosen unoiled B/C reference sites. The samples were analyzed for petroleum hydrocarbons and benthic infaunal community characteristics. This paper focuses on the results of the benthic infaunal community analysis. Analysis of Covariance (ANCOVA) was used to analyze the 1990–1999 infaunal species composition data. Very little effect of oiling was detected in either the analysis of community structure parameters or in individual species abundances. Oiling effects were detected at some sites in 1990 and 1991, but not in 1998 and 1999. Nearly all the change in intertidal community parameters between 1990 and 1999 was attributed to natural interannual variation. The composition of the intertidal community of B/C shores changed over time because of natural factors not related to the spill. A core group of species was found in each of the 4 years. This group of species represented between 9 to 30% of all species identified. Two other groups of species did not co-occur. One group was present in 1990 and 1991, but not in 1998 and 1999; the other group was present in 1998 and 1999, but not in 1990 and 1991. The progressive change in the animal community observed between 1990 and 1999 is very likely related to long-term climatic changes occurring in the study area and not the oil spill. This long-term study demonstrates the importance of study designs that allow separation of oiling effects from natural factors that can affect biological communities.


2003 ◽  
Vol 2003 (1) ◽  
pp. 371-376 ◽  
Author(s):  
Hélder O. Ferreira ◽  
Alexandre Cabrai ◽  
Álvaro Souza Junior

ABSTRACT The Brazilian oil and gas E&P sector has been experiencing important changes since the end of the state monopoly in 1998. These changes include a new regulatory environment which is still under construction, in particular the requirements for environmental protection. In this context, Resolution 293 of Brazilian National Environmental Council (CONAMA) was enacted regulating Facility Response Plans for oil spill incidents. These plans, which should be approved by the competent authority, include a vulnerability analysis that should discuss the probability of oil reaching certain areas as well as the environmental sensitivity of these areas. Oil spill modeling is an important tool to estimating the areas likely to be affected by an oil spill. Although oil spill modeling is also part of the environmental studies required in the environmental permitting process for oil E&P activities, there are not well defined criteria to compose the oil spill scenarios to be modeled. In order to demonstrate the impacts of different approaches in the results of oil spill modeling, a case study is presented related to an offshore drilling activity.


2001 ◽  
Vol 2001 (1) ◽  
pp. 685-691
Author(s):  
Heather Parker Hall ◽  
Christopher Barker ◽  
Peter Gautier ◽  
Tim Holmes ◽  
James Hardwick

ABSTRACT The National Contingency Plan (NCP) requires that Area Contingency Plans (ACPs) be adequate to address the removal of a worst case discharge from a vessel or facility operating in or near the area. The U.S. Coast Guard took this requirement further by issuing guidance in 1992 that ACPs address response to worst case, maximum most probable, and most probable discharges. As a result, many ACPs include area-specific scenarios applying these discharge quantities. However, there remains very little guidance about including trajectories in the ACPs. For example, only three of California's six ACPs include trajectories from computer models; the remaining three contain only oil spill scenarios that incorporate committee-selected environmental conditions to help estimate where oil might go. The 2000 revision of the San Francisco Bay and Delta ACP includes a new type of trajectory using the National Oceanic and Atmospheric Administration's (NOAA's) Trajectory Analysis Planner (TAP II). TAP II is a statistical model rather than a single scenario-based deterministic model. It generates statistics that describe oil spill behavior using an ensemble modeling approach. These statistics are generated from an ensemble of thousands of possible trajectories resulting from hundreds of oil spill scenarios computed within a given location. This approach is designed specifically for planning purposes, and not response. A statistics-based approach facilitates the planning process by providing key information, including which shorelines have the highest probability of being impacted, the size of the area that might be affected, how quickly a response should be mounted, what quantity of oil could impact a shoreline location, which resources will be oiled, which assets will be affected, and the most threatening origin of possible oil discharge. The authors describe how the TAP II model employs ensemble modeling, detail its application in the 2000 version of the San Francisco Bay and Delta ACP, and discuss possibilities for future applications.


2003 ◽  
Vol 2003 (1) ◽  
pp. 285-289
Author(s):  
E.S. Gilfillan ◽  
D.S. Page ◽  
K.R. Parker

ABSTRACT A 1990/1991 shoreline ecology program to assess the fate and effects of the Exxon Valdez oil spill in Prince William Sound was updated in 1998 and 1999. This update included a sediment sampling program for organisms at “worst case” sites and at randomly chosen reference sites. Correspondence analysis (CA), a statistical method that examines animal communities in terms of their similarity, was used to define community structure Statistical analysis of the degree of similarity between communities was used to assess effects of site-specific variables (sediment grain size, total organic carbon (TOC) and wave energy), interannual variation, and degree of oiling. Interannual variability had a significant effect on community structure, whereas site specific variables and degree of oiling did not. Differences in communities between 1998 and other years were particularly dramatic. The importance of interannual change demonstrates the importance of multi-year sampling and of appropriate study designs for separating impact effects from the natural occurring environmental factors which affect biological communities.


2008 ◽  
Vol 2008 (1) ◽  
pp. 571-579 ◽  
Author(s):  
Dagmar Schmidt Etkin

ABSTRACT The oil spill risk associated with an offshore wind farm was analyzed. This paper describes the methodology employed to determine the probability that a spill would occur, as well as the size probability distribution of potential spills, including worst-case discharge scenarios from the facility. Spills from vessels transiting surrounding waters due to collisions, allisions, and groundings were also evaluated. The analysis involved: evaluating events that might cause damage to the electric service platform (ESP) and wind turbine generators (WTG) components of the wind farm; analysis of the probability of each of these events occurring; analysis of the probability that these events cause damage to the ESP/WTGs; and estimation of the probability of the events causing damage sufficient to cause an oil spill. Data were aggregated for all spill causes to determine the overall probability distribution function of spill volumes. Probability size distributions for all spill causes were coupled with the probability of spill occurrence to provide an overall function to predict the probability of a particular spill of a certain volume occurring over 5, 10, and 30 years.


Disasters ◽  
2008 ◽  
Vol 33 (1) ◽  
pp. 95-109 ◽  
Author(s):  
María Dolores Garza ◽  
Albino Prada ◽  
Manuel Varela ◽  
María Xosé Vázquez Rodríguez

2017 ◽  
Vol 2017 (1) ◽  
pp. 802-821
Author(s):  
Johan Marius Ly

Abstract In Norway, the governmental oil spill response is primarily in place to cover for spills from unknown sources, or when the polluter is incapable of responding, or when his/her response is inadequate. The national plan for preparedness against acute pollution describes this. In 2015 a series of environmental risk based analyses specifically directed towards spills from ships were finalized. Together with a worst-case assessment on spills from an extremely large shipping incident and from an offshore blow-out we now have a set of analysis covering the whole range from smaller spills to worst case scenarios. Further, the Government presented a white paper on oil spill response to the Norwegian parliament in 2016, and these analyses are one of the inputs to the white paper. This paper will give an overview of the general methodology, process and recommendations from the environmental risk based analyses from the Norwegian mainland coastline and from Svalbard and Jan Mayen. The methodology follows three steps; a risk analysis, an environmental impact analysis and an emergency response analysis. The latter gives the recommendations related to equipment and other resources such as vessels and manpower, response time, training and exercises. The worst-case analysis follows a different methodology by being more descriptive than mathematical. Responding to the worst-case scenarios will depend upon using all available resources nationally, and includes international assistance. The scenarios from the analyses are also used as basis for large, national spill exercises, and the paper will give examples of exercises at Svalbard (in 2016), exercises with unified command from large offshore petroleum industry spill (2015) and a large ships collision with international assistance (planned for 2017).


2001 ◽  
Vol 2001 (2) ◽  
pp. 873-881 ◽  
Author(s):  
Deborah P. French McCay ◽  
Mark A. Jones ◽  
Louis Coakley

ABSTRACT Important questions that are asked by spill responders as well as those assessing potential impacts are: (I) What is the probability of oiling, above a threshold of concern, for each location near a potential spill site? (2) How soon will oil reach each site of concern? (3) How much oil contamination is expected (on average and worst case)? (4) Is there a potential for impacting biological resources with this oil? Using Applied Science Associates, Inc.'s (ASA) oil spill model (Spill Impact Assessment Package, SIMAP) in stochastic mode, these questions were evaluated for Florida Power & Light (FPL) for a variety of oil types and spill volumes, and for each of FPL's plants and terminals. The model was run many times, randomizing the start time over decade-long wind records. The model evaluates surface oil, shoreline oil, subsurface oil, and low molecular weight aromatics (the most toxic fraction of the oil). Both the mean and worst case exposure thickness/concentration are evaluated. The output includes contour maps, which may be interrogated (with the user interface) to determine the conditions under which worst case oiling occurs. The contours are overlaid on resource maps, showing where resources are most at risk and where protection would be most beneficial. FPL uses SIMAP for contingency planning, drills, spill response, and evaluation of fates and impacts of spills. ASA has developed databases for use in the model for the locations around each of FPL's plants and terminals. These data include shore and habitat type mapping, locations of sensitive resources, and current data sets generated by ASA's hydrodynamic model. The stochastic model may be used as a contingency planning tool or as a component of the ecological risk assessment process. It determines the range of distances and directions oil spills are likely to travel from a particular site, given wind and current data for the area. Practical uses for this information include the determination of which kinds of response equipment should be used in a particular area and where the equipment should be placed to be most effective, what areas are most at risk from possible spills at a specific location, and the expected magnitude of impacts.


Sign in / Sign up

Export Citation Format

Share Document